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ON THE APPROXIMATE SOLUTION OF THE J. BALL’S BEAM EQUATION IN
THE CASE OF PRESSURE DEPENDENCE OF EFFECTIVE VISCOSITY
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Abstract. An initial boundary value problem is posed for the J. Ball integro-differential equa-
tion, which describes the dynamic state of a beam. The solution is approximated utilizing the
Galerkin method, stable symmetrical difference scheme and the Jacobi iteration method. This
paper presents the approximate solution to one practical problem, particularly, the results of
numerical computations of the initial boundary value problem for an iron beam. In the present
article the case where the effective viscosity depends on the pressure is discussed. The results
of numerical calculations qualitatively satisfactorily describe the process under consideration.
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1 Statement of the problem. Let us consider J. Ball’s beam nonlinear integro-
differential equation (see [1])
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with the initial boundary conditions
u(z,0) =u’(z), w(x,0)=u'(z), (2)

w(0,t) =u(L,t) =0, g (0,1) = uyz (L, t) = 0. (3)

Here a,v,k,0,0, and § are given constants, among which the first four are positive
numbers, while v’(z) € W3(0,L) and u'(z) € Ly(0,L), are given functions such that
u’(0) = u'(0) = w’(L) = u!(L) = 0.

The right hand side function f(z,t) € Lo((0, L) x (0,7T)). We suppose that there exits
a solution u(x,t) € WZ((0,L) x (0,T)) of the problem (1)-(3).

The present article is a direct continuation of the articles [2]-[6] that considered an
initial boundary value problem for the J. Ball integro-differential equation, which describes
the dynamic state of a beam. The solution is approximated utilizing the Galerkin method,
stable symmetrical difference scheme and the Jacobi iteration method(see [7]). In the
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articles [2]-[3] the algorithm has been approved by tests. In the article [4]-[6] and the
present paper the approximate solution to one practical problem, particularly, the results
of numerical computations of the initial boundary value problem for an iron beam is
considered. In the present article the case where the effective viscosity depends on the
pressure is discussed. The results of numerical calculations qualitatively and satisfactorily
describe the process under consideration. A physical model that J. Ball uses in the article
[1] is taken from the handbook of Engineering Mechanics written by E. Mettler (see [8]).
For this model he wrote the corresponding initial boundary value problem for the integro-
differential equation of a beam (1). Here v, v, k, 0, 3 and ¢ are given constants from which
the following five have the form
E-1 E-A-A n-I E-A An
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where F is the Young’ modulus, A is the cross-section area, 7 is the effective viscosity,
I is the cross-sectional second moment of area, p is the mass per unit length the refer-
ence configuration, L is beam length, A is beam length change (extension) and § is the
coefficient of external damping.

2 The numerical realization. For the approximate solution of an initial bound-
ary value problem (1)-(3) several programs are composed in “Maple”, several numerical
experiments are carried out. This paper presents the approximate solution to the one prac-
tical problem, particularly, the results of numerical computations of the initial boundary
value problem for an iron beam are represented in the tables.

Issues of the initial boundary value problem of the iron beam are studied for the fol-
lowing meanings of parameters: spatial, temporal, mathematical algorithm and physical
nature of the beam. L = 1m, T" = 1sec, the grid length of a spatial variable H = 5,
the grid length of a temporal variable M = 5, the amount of coordinate functions in the

k
Galerkin method n = 5; number of iterations nj., = 5, £ = 1.9 x 10° -3 p="T7.874 %,
cm cm

PR
A =0.0lm, A= 0.01m?, I =1000Pa.
In this paper, we take the effective viscosity as a function of pressure and time :
n(t) = (1000 + 100t)~' « = 0.24613 x 10° - datvl, 3 = 241.3, v = 0.12954 x datv - 0,

k = 12065, 0 = 0.0127 x 7, and § = 0. The initial functions u°(x) = sin <7T—Lx> ,ut(z) =0,

the right-hand function f(z,t) = 0. For each counting problem, we will see two options:

a) Simple model - for each specific ¢, we calculate  and take the coefficients in the
corresponding differential equations to be constant across all time scales;

b) Complex model - in the differential equations, we take the coefficients as time-
dependent at t for all time scales; we compare the results of the cases considered for the
simple model with the results obtained with the complex model for different values of the
spatial and temporal variables.

In the case of pressure dependence, the numerical results agreed with high accuracy.

In the presented paper the numerical computations of bending function of the beam
u(z,t) is presented for the several meanings of the following effective viscosity 7:
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Case 1- A simple model,
Case 2 - complex model. See Table 1;

t \ z|Case|z=0| =02 r=04 x=0.6 =038 =1
t=20 1 0 0.587785 | 0.951057 | 0.951057 | 0.587785 0
=0 2 0 0.587785 | 0.951057 | 0.951057 | 0.587785 0
t=0.1 1 0 1.763356 | 2.853169 | 2.853169 | 1.763356 0
t=0.1 2 0 1.763356 | 2.853169 | 2.853169 | 1.763356 0
t=0.2 1 0 4.114494 | 6.657392 | 6.657392 | 4.114494 0
t=0.2 2 0 4.114494 | 6.657392 | 6.657392 | 4.114494 0
t=0.3 1 0 6.465628 | 10.461607 | 10.461607 | 6.465628 0
t=0.3 2 0 6.465628 | 10.461607 | 10.461607 | 6.465628 0
t=04 1 0 8.816755 | 14.265810 | 14.265810 | 8.816755 0
t=04 2 0 8.816755 | 14.265810 | 14.265810 | 8.816755 0
t=0.5 1 0 11.167873 | 18.069998 | 18.069998 | 11.167873 0
t=0.5 2 0 11.167873 | 18.069998 | 18.069998 | 11.167873 0
t=06] 1 0 13.518978 | 21.874166 | 21.874166 | 13.518978 | 0
t=0.6 2 0 13.518978 | 21.874166 | 21.874166 | 13.518978 0
t=0.7 1 0 15.870069 | 25.678311 | 25.678311 | 15.870069 0
t=0.7 2 0 15.870069 | 25.678311 | 25.678311 | 15.870069 0
t =028 1 0 18.221143 | 29.482428 | 29.482428 | 18.221143 0
t =028 2 0 18.221143 | 29.482428 | 29.482428 | 18.221143 0
t=09] 1 0 | 20.572197 | 33.286514 | 33.286514 | 20.572197 | 0
t=09]| 2 0 | 20.572197 | 33.286514 | 33.286514 | 20.572197 | 0
=1 1 0 22.923229 | 37.090563 | 37.090563 | 22.923229 0
=1 2 0 22.923229 | 37.090563 | 37.090563 | 22.923229 0

Table 1.

Conclusion. As numerical experiments demonstrate, once the coefficients of effective

viscosity 7 increase, concomitantly, the numerical values of displacement functions (cur-
vature) u(x,t) decrease for specific values of x and ¢. However, for every specific values
of n, the numerical values of the displacement functions for specific x increase with the
increase of time ¢. The numerical values of the displacement functions with respect to
temporal variable t are symmetrical to the midpoint of beam at x = L2.
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