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Abstract. In this paper, we present the program implementation of the algo-
rithm for computing the splitting type of holomorphic vector bundles induced
from a Fuchsian system on the Riemann sphere. We develop a general approach
to the problem by employing the methods of deformation of complex structures in
the sense of Kodaira and Spencer. As a consequence, we calculate the dimension
of the deformation space of complex structures of canonical deformation.
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Introduction

The topics addressed in this paper are closely related to the classification of
holomorphic vector bundles on Riemann surfaces and have a topological char-
acter. On the other hand, the factorization problem of matrix functions has
its own independent research methods that are more analytical in nature than
topological. We utilized the progress achieved in the factoring technique of ma-
trix functions for the investigation of invariants of holomorphic vector bundles
induced from systems of differential equations.

Construction of the holomorphic vector bundle on Riemann surface by regular
system of differential equations was considered by H. Röhrl [23] for the investi-
gation of global behavior of the solutions of a system of differential equations. In
particular, Röhrl used such a technique for the solution of Hilbert’s 21 problem
for the class of regular systems. The far-reaching generalization of Röhrl’s ap-
proach to higher-dimensional complex manifolds were provided by P. Deligne [7].
Deligne considered the extension of the holomorphic vector bundle with mero-
morphic connection along the singular divisor and in such a way he obtained the
nontrivial vector bundle on a complex manifold equipped with a logarithmic con-
nection. In the last decade, several significant problems were solved by Deligne’s
approach to the global theory of differential equations, including Hilbert’s famous
21st problem and its generalization [18], [25], [5], [13], [12], [11].

Here, we utilize Deligne’s approach for regular systems of differential equa-
tions and construct a holomorphic vector bundle on the Riemann sphere from
the Fuchsian system. We compute the splitting type of the canonical vector bun-
dle and providing an algorithm for computing the dimension of the deformation
space of holomorphic structures of the canonical bundle.

All the main results have program implementation in python 3.6+ and the
numerical and symbolic computations were done using the mpmath library. The
corresponding code is available at:
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https://github.com/giorgi94/fuchsian--toolkit.

1. The canonical bundle induced from the Fuchsian system

Consider the non-resonant Fuchsian system of differential equations on the
Riemann sphere CP1

df =

 m∑
j=1

Aj

z − sj
dz

 f, (1)

with poles at the points s1, ..., sm, sj 6= ∞, where Aj , j = 1, ...,m are constant
matrices and

∑m
j=1 Aj = 0.

Denote by S = {s1, ..., sm} the set of singular points of the system (1). Let
γ1, ..., γm be closed paths with starting and end point z0, z0∈S and going around
s1, ..., sm. Let Mj be the monodromy matrices corresponding to sj , j = 1, ...,m.
Nondegenerate matrices Mj depend only on homotopy class [γj ] of γj and there-
fore defines the monodromy representation

ρ : (CP1 \ {s1, ..., sm}, z0) → GLn(C), ρ([γj ]) = Mj , j = 1, ...,m. (2)

Let Ej = 1
2πi ln ρ(γj) with eigenvalues λj

k satisfying the conditions:

0 ≤ Reλj
k < 1. (3)

Denote by Xm = X \ S. Let X̃ → Xm be the universal covering map of Xm.
Then it is a bundle with fiber π1(Xm, z0), where z0 ∈ Xm and π1(Xm, z0) denotes
the fundamental group of the manifold Xm. The group π1(Xm, z0) is isomorphic
to the group of deck transformations of this covering and therefore acts on X̃
(see [5]).

It is known that there exists a basis (s.c. Levelt basis) of the solution space
of system (1) such that the fundamental matrix of solutions F (z̃) at the singular
point sj admits the following representation

Fj(z̃) = Hj(z)(z − sj)Λ
j
(z̃ − sj)Ej , (4)

where z̃ denotes the coordinates on the universal covering, Hj(z) is holomorphic
invertible at sj , Λj = diag(κj

1, ..., κ
j
n), κj

1 ≥ ... ≥ κj
n, is the diagonal matrix, with

integer entries and Ej are upper triangular matrices defined above, satisfying the
conditions (3).

Consider the trivial principal bundle X̃ × GLn(C) → X̃ (or vector bundle
X̃ × Cn → X̃). The quotient space X̃ × GLn(C)/ ∼ gives the locally trivial
bundle on Xm, where ∼ is an equivalence relation identifying the pairs (x̃, g) and
(σx̃, ρ(σ)g), for every x̃ ∈ X̃, g ∈ GLn(C) (or g ∈ Cn). Denote the obtained
bundle by Pρ → Xm (or Eρ → Xm) and call it the bundle associated with
the representation ρ. Obviously, this bundle according to the transformation,
functions may be constructed in the following manner (see [14]).

Let {Uα} be a simple covering of Xm, i. e. every intersection Uα1∩Uα2∩...∩Uαk

is simply connected. For each Uα we choose a point zα ∈ Uα and join z0 and zα

by γα starting at z0 and ending at zα. For a point z ∈ Uα ∩Uβ we choose a path
τα ⊂ Uα which starts at zα and ends at z. Consider

gαβ (z) = ρ
(
γατα (z) τ−1

β (z) γ−1
β

)
. (5)
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We see that gαβ (z) = gβα (z) on Uα∩Uβ and gαβgβγ (z) = gαγ (z) on Uα∩Uβ∩Uγ .
The cocycle {gαβ (z)} does not depend on the choice of z. Hence from this

cocycle we obtain a flat vector (or principal) bundle on Xm, which is denoted by
P

′
ρ (E′

ρ.) Let {tα (z)} be a trivialization of our bundle, i. e.

tα : p−1 (Uα) → GLn(C)

is a holomorphic mapping. Consider the matrix-valued 1-form {ωα}:

ωα = −t−1
α dtα.

{gαβ (z)} are constant on the intersection Uα ∩ Uβ and gαβ(z)tβ (z) = tα (z), so
on Uα ∩ Uβ the identity ωα = ωβ holds. Indeed, replacing tβ by t−1

β gαβ in the
expression ωβ = −t−1

β dtβ , we obtain

ωβ = −t−1
α gαβ (z) dtαg−1

αβ (z) = −t−1
α dtα.

So, ω = {ωα} is a holomorphic 1-form on Xm and therefore is a connection 1-form
of the bundle P′

ρ → Xm. The corresponding connection is denoted by ∇′. We will
extend the pair

(
P′

ρ,∇′) to X. As the required construction is of local character,
we shall extend P′

ρ → Xm to the bundle P′′
ρ → Xm ∪ {si}, where si ∈ S.

First consider the extension of the principal bundle P
′
ρ → Xm. Let a neigh-

borhood Vi of the point si meet Uα1 , Uα2 , ...Uαk
. As we noted when constructing

the bundle from transition functions (5) only one of them is different from iden-
tity. Let us denote it by g1k, then g1k = Mi, where Mi is the monodromy which
corresponds to the singular point si and is obtained by representation (2). Select
a branch of the multivalued function (z̃ − si)

Ei containing the point s̃i ∈ Ũi. Thus
the selected branch defines a function

g01 = (z − si)Ei . (6)

Denote by g02 the extension of g01 along the path which goes around si coun-
terclockwise, and similarly for other points. At last on Ui ∩ Uαk

∩ Uα1 we shall
have:

g0k(z) = g01(z)Mi = g01(z)g0k(z).

The function g0k : Vi → GLn(C) is the one defined at the point si, and takes
its value coinciding with the monodromy matrix. It means, that we made an
extension of the bundle to the point si. In a neighborhood of si one will have

ωi = dg0kg
−1
0k = Ei

dz

z − si
. (7)

So we obtained the holomorphic principal bundle Pρ → X on the surface X.
The vector bundle associated to Pρ → X, which we denote by Eρ → X is not
topologically trivial and the Chern number c1( Eρ) of Eρ → X is equal to

c1(Eρ) =
m∑

i=1

tr(Ei). (8)
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Matrix valued meromorphic 1-form ω = (ωi) is a connection form of the loga-
rithmic connection ∇ of Eρ. From this the holomorphic sections of Eρ are the
solutions of the equation

∇f = 0 ⇐⇒ df = ωf, (9)

and if the Riemann surface X is the Riemann sphere CP1, then

ω =
m∑

j=1

Aj

z − sj
dz. (10)

Let βj
i = κj

i +λj
i . The numbers βj

i , κj
i will be called exponents (or j-exponents)

and valuations of the solution space of the system (1) at the point si, respectively.
Besides,

∑m
j=1

∑n
i=1 βj

i = 0 and κj
i = [Reβj

i ], where [Reβj
i ] denotes an integer

part of real numbers [Reβj
i ] (see [4]).

An important characteristic of the behavior of a solution of system (9) in
a neighborhood of a singular point sj is the integer part of the real part of the
number βj

i , which equals to κj
i ; clearly these also influence behavior of the sections

of the bundle induced by the system of equations.
Above we have constructed the canonical extension of the bundle. In this case

we take Λj = (0, ..., 0) and Mj are upper triangular matrices. In the general case,
for every given date (S, ρ) induced from system (1), there exists a family of the
holomorphic vector bundles with logarithmic connection (∇C,Λ, EC,Λ

ρ ). All the el-
ements from this family depend on the collection of the matrices C = (C1, ..., Cm)
such that C−1

j MjCj are upper triangular and the collection of diagonal matrices of
the valuations Λ = (Λ1, ...,Λm), where Λj = diag(κj

1, ..., κ
j
n), as mentioned above,

are diagonal matrices with integer entries, satisfying the condition κj
1 ≥ ... ≥ κj

n.
Reduction of the monodromy matrices Mj to the upper triangular form by Cj is
the action Cj on the solution space such that

g01 → g̃01 = (z − sj)Λ
j
(z − sj)C−1

i EjCjC−1
j ,

ωj → ω̃j =
(
Λj + (z − sj)Λ

j
C−1

j EjCj(z − sj)−Λj
) dz

z − sj
,

where g01 is a cocycle defined by formula (6) and ωj is defined by the expression
(7). For the canonical extension from this family, we use the notation (E0,∇0)
and as mentioned above this corresponds to Λ = (Λ0, ...,Λ0), where Λ0 = (0, ..., 0).
The canonical extension does not depend on the collection of matrices C.

According to Birkhoff-Grothendieck theorem EC,Λ decomposes into a direct
sum of line bundles (see [22]):

E(kC,Λ
1 )⊕ · · · ⊕ E(kC,Λ

n ) → CP1,

where E(kC,Λ
j ) here and below denotes line bundle (one dimensional) with Chern

number kC,Λ
j .

The integer valued vector KC,Λ = (kC,Λ
1 , ..., kC,Λ

n ) is called the splitting type
of the vector bundle EC,Λ.
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For the canonical extension, we omit upper indices and for such holomorphic
vector bundle we use the decomposition of the form

E ∼= E(k1)⊕ · · · ⊕ E(kn). (11)

It is known that if the representation is irreducible then

n∑
i=1

(k1 − ki) ≤
1
2
n(n− 1)(m− 2). (12)

In particular, the inequality (12) implies that the irreducibility properties of
Riemann (hypergeometric) equations lead to the stability of the corresponding
canonical bundle.

2. Loop space and deformation of holomorphic vector bundles

In this section, we consider the deformation of complex structures of Kodaira-
Spenser [19] of canonical bundles induced from the Fuchsian system. For the
notation and basic facts from this theory, we refer to paper [24], adapted for our
application.

Let Γ be a smooth closed positively oriented loop in CP1 which separates CP1

into two connected domains U+ and U−. Suppose 0 ∈ U+ and ∞ ∈ U−. Let us
denote by Ω the space of all Hölder-continuous matrix functions f : Γ → GLn(C)
with the natural topology. For every matrix function f ∈ Ω we have the following
formula for the global index k of f :

k =
1
2π

∆Γargdetf(t).

Let Ω± be a space of matrix functions f ∈ Ω such that f is the boundary value
of the matrix function holomorphic in U±, respectively, and f(∞) = 1.

It is known that any matrix function f ∈ Ω can be represented as

f(t) = f−(t)dKf+(t), (13)

where f± ∈ Ω± and dK is a diagonal matrix dK = diag(tk1 , ..., tkn) satisfying
the condition k1 ≥ ... ≥ kn. The integers k1, ..., kn will be called partial indices
of f and the integer valued vector K = (k1, ..., kn) will be called characteristic
multi-index [20]. Two matrix functions f, g ∈ Ω will be called equivalent, if f
and g have identical characteristic multi-indices [3], [22].

For K = (k1, k2, ..., kn), denote by ΩK the set of equivalence classes of matrix
functions from Ω, with characteristic multi-index K. The matrix-function f ∈ ΩK

is called stable, if all matrix functions have the same partial indices in a sufficiently
small neighborhood of f. It is known that f is stable iff k1 − kn ≤ 1. Topological
space Ω decomposes into a countable number of open components

Ωk = {f ∈ Ω,∆Γargdetf(t) = 2πk},Ω = ∪kΩk, k ∈ Z.

One has the stratification of Ωk by the strata ΩK , i.e., Ωk = ∪KΩK , where
Ωk is connected, and the matrix functions f1(t) and f2(t) belong to the same Ωk

if and only if f1(t) and f2(t) are homotopic.
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Deformation ΩK′ , K
′
= (k

′
1, k

′
2, ..., k

′
n) of the strata ΩK , K = (k1, k2, ..., kn),

is called elementary if k
′
i = ki except for two indices p and q, p < q, for which we

have k
′
p = kp − 1, k

′
q = kq + 1. It follows from this that for every k, there exists a

diagonal matrix in Ωk with stable partial indices (p+1, p+1, ..., p+1, p, p, ..., p),
where k = np + r, 0 ≤ r < n and every matrix function can be transformed
into such stable (i.e.|ki− kj | ≤ 1, i, j = 1, 2, ..., n) diagonal matrix by elementary
operations. Besides, the multi-index K as a function of f ∈ Ωk has discontinuities
only on the strata ΩK .

The Banach Lie group Ω+ × Ω− acts analytically on Ω via

f
α7−→ h1fh−1

2 , f ∈ Ω, h1 ∈ Ω+, h2 ∈ Ω−.

It can be readily seen that the orbit of the diagonal matrix dK by the action α
is ΩK [22].

The stability subgroup HK of f under the action α consists of those pairs
(h1, h2) of upper triangular matrix-functions where the (i, j)-th entry in h1 is a
polynomial in z of degree at most (k1 − k2) and f = h1fh−1

2 ; the space HK has
finite dimension

dimHK =
∑

ki≥kj

(ki − kj + 1). (14)

The stratum ΩK is a locally closed analytical submanifold of Ω and codimen-
sion of ΩK in Ω is equal to

dimΩ/ΩK =
∑

ki>kj

(ki − kj − 1). (15)

A connection between partial indices of the matrix functions and the splitting
type of the holomorphic vector bundle E are presented in the following theorem:

Theorem 1. (see [3], [22]) There is a one-to-one correspondence between
the strata ΩK and holomorphic vector bundles on CP1.

It follows from this that the diagonal matrix function dK ∈ ΩK is a cocycle,
which defines a holomorphic vector bundle E(k1)⊕ ...⊕ E(kn) on CP1.

The holomorphic type of the bundle is determined by a vector of integers
(k1, . . . , kn) ∈ Zn, k1 ≥ · · · ≥ kn, or else by a loop

dK : S1 → GLn(C),

dK(z) = diag(zk1 , ..., zkn) and S1 is a unit circle in a complex plane. Following
Theorem 1, we identify invertible matrix functions with characteristic multi-index
K and holomorphic bundles with splitting type K. A holomorphic deformation
of the bundle E in the parameter space Bl ⊂ Cl is called a matrix function

D : (CP1 \ {0,∞})× Bl → GLn(C),

holomorphic in the variable z and parameter t. Therefore, if the matrix function
Dt(z), z ∈ CP1 \ {0,∞}, t ∈ Bl, which depends on the parameter t, is a deforma-
tion of the vector bundle E with splitting type (k1, ..., kn), then D0(z) = dK(z).
Here Bl ⊂ Cl is an open ball containing the origin.
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Let us denote by TBl the tangent space of Bl at 0. Consider H1(CP1;O(End E))
— the first cohomology group with coefficients in holomorphic sections of the
bundle End(E). Since End(E) ∼= E ⊗ E∗, the corresponding loop will be

dK ⊗ d−1
K : S1 → GLn2(C),

dK ⊗ d−1
K = diag(zk1−k1 , zk1−k2 , ..., zkn−kn).

Let us use the Birkhoff-Grothendieck theorem:

End(E) = E(k1 − k1)⊕ E(k1 − k2)⊕ · · · ⊕ E(kn−1 − kn)⊕ E(kn − kn).

Since
dim H1(CP1;O(End(E))) =

∑
dimH1(CP1;O(E(ki − kj))),

and
dim H1(CP1;O(E(k))) = |k| − 1

for k < 0, whereas
H0(CP1;O(End(E(k)))) = 0

for k ≥ 0, using moreover the Riemann-Roch theorem one obtains

dimH1(CP1;O(EndE)) =
∑

ki>kj

(ki − kj − 1). (16)

Suppose k1 > · · · > kn. Then, following [19],

m̃(E) = dimH1(CP1;O(End(E))) =
∑
j>i

(ki − kj)−
n(n− 1)

2
,

and

m(E) = m̃(E) +
n(n− 1)

2
. (17)

The number m(E) is called the reduced dimension of the deformation space.
It is known that for a holomorphic bundle E → CP1 there exists a complete

and effective deformation, which means that the Kodaira-Spencer map

τ : TBl → H1(CP1;O(End(E)))

defined by the formula τ(t) = ∂
∂tΦ(z, t) ·Φ(z, t)−1 is an isomorphism. This implies

that the dimension of the deformation space is equal to the number m(E).
The preceding discussion established the following theorem.
Theorem 2. Let E be a canonical vector bundle induced from Fuchsian

system (23). Then dimension of the deformation space of complex structures
m(E) is expressed by the formula (16) and can be calculated algorithmically.

We provide the algorithm for calculating m(E) in the next section.
Example 1. For three- and two-dimensional vector bundles, the aforemen-

tioned global invariants of the bundle are sufficient for expressing the splitting
type explicitly. For example, suppose E → CP1 is a three-dimensional bundle
with E = E(k1) ⊗ E(k2) ⊗ E(k3), k1 > k2 > k3. Then the splitting type of this
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bundle is expressed in terms of the dimension of the deformation space, Chern
number and Fuchs weight [5] of the bundle by the following formula:

k1 =
1
3
c1(E) +

1
3
w(E);

k2 =
1
3
c1(E) +

1
2
m(E)− 2

3
w(E);

k3 =
1
3
c1(E)− 1

2
m(E) +

1
3
w(E).

Indeed, for the Chern number one has the equality

c1(E) = k1 + k2 + k3. (18)

For the Fuchs weight one has the equality

w(E) = 3k1 − c1(E). (19)

The reduced dimension of the deformation space equals

m(E) = dimH1(CP1;O(End(E))) + 3
∑

ki>kj

(ki − kj − 1) + 3 (20)

= k1 − k2 − 1 + k1 − k3 − 1 + k2 − k3 − 1 + 3 = 2k1 − 2k3.

Solving the system of equations (18), (19), (20) we obtain the above formulas
for a splitting type of canonical vector bundle. Formulas of such type do not exist
in higher dimensions. In the next section, we use another approach to calculate
the splitting type of canonical vector bundles, and as a consequence, we obtain
formulas for computing the dimension of the space of complex structures.

3. Computation of the dimension of the moduli space of holomor-
phic structures of the canonical bundle

Here, we summarize some basic facts from above as the following, one pos-
sible version of the Riemann-Hilbert monodromy problem, which is known as a
Riemann-Hilbert problem with given asymptotic [4]:

For given representation

ρ : π1(Xm, z0) → GLn(C) (21)

and collection of diagonal matrices Λ = (Λ1, ...,Λm) such that

m∑
k=1

Λk = 0 (22)

construct the Fuchsian system

dF =

 m∑
j

Aj

z − sj
dz

 F, (23)
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where Aj , j = 1, ....,m are constant matrices: Aj = resz=sjω(z) and
∑m

j=1 Aj = 0
if sj 6= ∞, for all j = 1, ...,m, with given monodromy ρ and given Λ as collection
of matrices of valuations.

In general, for the class of the Fuchsian systems, this problem has negative
solution but it is known that there exists a system of differential equations

dy(z)
dz

= B(z)y(z) (24)

with Λ = (Λ1, ...,Λm) given matrix of valuations, whose monodromy representa-
tion coincides with ρ, is Fuchsian at the given points s1, ..., sm and have apparent
singularity at ∞.

The existence system (24) with given monodromy and singular points s1, ..., sm,
follows from positive solution of Riemann-Hilbert monodromy problem for regular
systems (Plemelj theorem [5]).

At the same time for any system of equations (23) and collection of diagonal
matrices Λ1, ...,Λm with integer entries there exists the rational matrix function
T (z) such that the system of equations (23) is gauge equivalent to the system

dỹ

dz
= B(z)ỹ, B(z) = T (z)

 m∑
j=0

Aj

z − sj

 T−1(z) +
dT (z)

dz
T−1(z) (25)

with valuations Λ1, ...,Λm at the singular points s1, ..., sm, respectively, and pos-
sible apparent singularity at ∞ [14].

We call rational matrix function T (z) a transform matrix [14].
Proposition 1. [14] The transform matrix T (z) is a meromorphic matrix

function, and it can be constructed algorithmically.
Consider canonical extension (E0,∇0) of the holomorphic vector bundle in-

duced from the system (24) and suppose that splitting type of this bundle is
K = (k1, ..., kn), k1 ≥ ... ≥ kn :

E0 ∼= E(k1)⊕ ...⊕ E(kn).

As mentioned above the canonical extension is induced from the regular system
of the form (24) with valuations Λj = (0, ..., 0) at each singular points sj , j =
1, ...,m.

Proposition 2. [4], [14] The splitting type of the canonical vector bundle E0

coincides with the partial indices of the transform matrix T (z).
From Proposition 1 and Proposition 2, it follows that the splitting type of

the canonical vector bundle can be calculated algorithmically. Therefore, the
invariants (14),(15) and (20) can be calculated algorithmically as well. This is
the complete proof of Theorem 2.

We provide a brief description of the algorithm for constructing the transfor-
mation matrix here.

Step 1: Choose any coefficient matrix of the system and reduce it to its
Jordan canonical form.

Step 2: Arrange the real parts of the eigenvalues in descending order.
Step 3: Equate eigenvalues to the corresponding vector of valuations.
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Remark: For the canonical extension, the vector of valuations has coordinates
set to 0.

Step 4: Repeat Steps 1-3 for all coefficient matrices.
Remark. The coefficient matrix changes after each step.
Each step is carried out using a matrix. The transform matrix is the product

of these matrices.
For calculating the partial indices of the transform matrix, we use the algo-

rithm and its program implementation provided in [1] and [2].

4. Conclusion

Based on our previous papers [14], [15] we present a computer implementation
of the algorithm for constructing the transform matrix. As a consequence of this,
we obtain a method for calculating the dimension of the deformation space of
complex structures of the canonical vector bundles induced from the Fuchsian
system by the splitting type of this bundle. As demonstrated by formulas (14) and
(15), and Example 1, this number is a fundamental invariant of the holomorphic
vector bundles.
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