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Abstract. For second order systems with three singular points we give complete
characterization of corresponding vector bundles by invariants of the Fuchsian
system, in particular, we compute splitting type of vector bundles of an explicitly
form.
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1. Introduction

Let a Fuchsian system of the form

dF =

 m∑
j

Aj

z − sj
dz

F, (1)

be given, where S = {s1, s2, ..., sm} is the set of singular points of the ma-
trix function ω, Aj , j = 1, ....,m are constant matrices: Aj = resz=sjω(z) and∑m

j=1Aj = 0 if sj ̸= ∞, for all j = 1, ...,m (see [4], [5], [7])

Along with the system (1) we consider n−order Fuchsian equation

f (n)(z) + a1(z)f
(n−1)(z) + ....+ an−1(z)f

′
+ an(z)f(z) = 0 (2)

on the complex plane, with same singular points, where aj(z), j = 0, ...,m are
meromorphic functions satisfying Fuchsian condition with respect to orders of
singularity (see [7], [12]). By definition the exponents of the singular point sj are
the roots of indicial equation and satisfy the Fuchs relation (see [3], [12], [13])

m∑
j=1

(λj1 + ...+ λjn) =
1

2
n(n− 1)(m− 2). (3)

The system (1) and the equation(2) define the monodromy representation

ρ : π1(Xm, z0) → GLn(C) (4)

by the correspondence gj →Mj , where gj are the generators of the fundamental
group and Mj are the monodromy matrices (see [3], [9], [10]).

The Fuchsian differential equation (2) with m singular pints defined by

peq =
n2

2
(m− 2) +

nm

2
(5)



36 Gulagashvili G.

parameters, the monodromy representation depends on

prep = n2(m− 2) + 1 (6)

parameters (see [4], [13]). The different (defect number)

d =
nm(n− 1)

2
+ (1− n2)

is always non negative and when n = 2,m = 3 defect number equals zero. Such
equation is a Riemann equation

f
′′
(z) +

(
1− ρ1 − ρ2
z − s1

+
1− σ1 − σ2
z − s2

+
1− τ1 − τ2
z − s3

)
f

′
(z) (7)

+

(
ρ1ρ2(s1 − s2)(s1 − s3)

z − s1
+
σ1σ2(s2 − s3)(s2 − s1)

z − s2
+
τ1τ2(s3 − s1)(s3 − s2)

z − s3

)
× f(z)∏3

j=1(z − sj)
= 0,

where ρ1, ρ2;σ1, σ2; τ1τ2 are the exponets of (7) respectively at the singular points
s1, s2, s3 and satisfy Fuchs’s relation (3):

ρ1 + ρ2 + σ1 + σ2 + τ1 + τ2 = 1.

All solutions of Riemann equations are denoted by the symbol

f = P


s1 s2 s3
ρ1 σ1 τ1 z
ρ2 σ2 τ2

 .

The exponents of the equation are invariants of the conformal transformation

w = R(z) =
az + b

cz + d

of the Riemann sphere and if wj = R(sj), then

P


s1 s2 s3
ρ1 σ1 τ1 z
ρ2 σ2 τ2

 = P


w1 w2 w3

ρ1 σ1 τ1 w
ρ2 σ2 τ2

 .

If R(s1) = 0, R(s2) = 1, R(s3) = ∞, then

P


s1 s2 s3
ρ1 σ1 τ1 z
ρ2 σ2 τ2

 = P


0 1 ∞
0 0 α z

1− γ γ − α− β β

 = F (α, β, γ; z).

and this is a complete set of solutions of the Gauss hypergeometric equation

z(z − 1)f
′′
(z) + (γ − (α+ β + 1)z)f

′
(z)− αβf(z) = 0. (8)

It is known that (8) is free from accessory parameters and the monodromy rep-
resentation of this equation is determined by exponents up to conjugation in
GL2(C).
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Consider a second order equations of Fuchsian type whose singularities and
exponents are given by the following Riemann scheme

P


0 1 α1 ... αk ∞
0 0 0 ... 0 α z

1− γ 1− δ 1− ϵ1 ... 1− ϵk β


where the exponents are connected by Fuch’s relation (see [4], [12], [13])

α+ β − γ − δ − ϵ1 − ...− ϵk + 1 = 0.

The equation defined by these date contains just k accessary parameters, denoted
by ρ1, ..., ρk and can be written in the form

y
′′
(z) +

(
γ

z
+

δ

z − 1
+

k∑
i=1

ϵi
z − ai

)
y
′
(z) +

αβzk + ρ1z
k−1 + ...+ ρk

z(z − 1)
∏k

i=1(z − ai)
= 0. (9)

In case when k = 1 we obtain Heun’s equation. The special type Heun’s equation
[4], [13] with the Riemann scheme

P


0 1 s ∞
0 0 0 −n/2 z
1/2 1/2 1/2 1

2(n+ 1)

 ,

which has the form

y
′′
(z) +

1

2

(
1

z
+

1

z − 1
+

1

z − s

)
y
′
(z) +

λ− n(n+ 1)z

4z(z − 1)(z − s)
y(z) = 0, (10)

is a Lame equation, where λ is a accessory parameter.
If the monodromy representation of equation (9) is irreducible and singular

points a1, ..., ak are apparent ([6], [13], [14]) then the monodromy group with
respect to a suitable fundamental system of solutions can be calculated in an
explicit form by algebraic operations.

2. The Fuchsian systems with three singular points

Introduce the following differential operators: D = d
dz , δ = zD and δ2 =

z2D2+zD. In this notations the hypergeometric equation with parameters α, β, γ
can be written in following equivalent form:

(1− z)δ2F + ((γ − 1)− (α+ β)z)δF − αβzF = 0, (11)

z(1− z)D2F + ((γ − (α+ β + 1)z)DF − αβF = 0. (12)

The indicial equation at the point 0 of equation (11) is

λ2 + (γ − 1)λ = 0

and therefore the exponents are 0, 1−γ. The equation is nonresonant since γ /∈ Z.
A basis of the solutions near the singular point 0 is:

B0 =
{
F (α, β, γ; z), z1−γF (α− γ + 1, β − γ + 1, 2− γ; z)

}
. (13)
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To obtain solutions at the point 1 we change a local coordinate at z = 1 take
τ = 1 − z. From this if F (z) = G(τ), then F

′
(z) = −G′

(τ) and F
′′
(z) = G

′′
(τ).

The equation (11) for G(τ) has the form

τ(1− τ)D2G+ ((α+ β − γ + 1)− (α+ β + 1)τ)DG− αβG = 0. (14)

The solutions of (13) are hypergeometric functions with parameters α, β, α+
β − γ + 1 and basis of solutions space at 1 are the following functions

F (α, β, α+ β − γ + 1; 1− z), (15)

(1− z)γ−α−βF (γ − β, γ − α, γ − α− β + 1; 1− z). (16)

Similarly, not difficult but deep analysis show that change of variable w = 1
z

gives the following hypergeometric equation with parameters α, α−γ+1, α−β+1 :

w(1− w)δ2H + ((α− β)− (2α− γ + 1)w)δH − α(α− γ + 1)wH = 0. (17)

The basis of solutions space of the equation (17) at singular point ∞ is

B∞=
{
z−αF (α, α− γ + 1, α− β+1; 1/z), z−βF (β, β − γ + 1, β − α+1; 1/z)

}
.

(18)
Note that the hypergeometric function F (α, β, γ; z) is defined by the series

F (α, β, γ; z) =

∞∑
n=0

(α)n(β)n
(γ)nn!

zn

for |z| < 1 and by continuation elsewhere [1]. For δ ∈ C and n ∈ N by definition
(δ)n is

(δ)0 = 1 and (δ)n = δ(δ + 1)...(δ + n− 1), n ≥ 1.

We also require that α, β, γ /∈ −N and γ, α− β, γ − α− β /∈ Z.
Let

S = CP1 \ ([∞, 0] ∪ [1,∞]) = C \ ([−∞, 0] ∪ [1,∞]).

The introduced set S is simply connected and all three bases of the germs
B′,B∞,B∞ extend to the bases of the solution space VS(α, β, γ) of the equa-
tion (11) (or (12)). For the multivalued functions (such ar zδ or (1 − z)δ) we
always use the principal branch.

Denote by π1(X3, z0) the fundamental group of the noncompact Riemann
surface CP1 \ {0, 1,∞}, where z0 is some point from X3, say z0 = 1/2. Let g0, g1
and g∞ be the loops which begin and end at point z0 and going around 0, 1,∞
respectively. The loops g0, g1, g∞ are generators of π1(X3, z0) and satisfy the
relation g0g1 = g−1

∞ .
The equation (11) defines the monodromy representation

ρ : π1(X3, z0) → GL2(C), ρ(gj) =Mj , j = 0, 1,∞. (19)

The monodromy matricesMj satisfy the relationM1M2 =M−1
∞ .Monodromy

group of the equation (11) is generated by the monodromy matrices M1 and M2.
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Proposition 1. The monodromy matrices along the loops g0, g1, g∞ with
respect to the basis B0,B1,B∞ are

Mg0
0 (B0) =

(
1 0
0 e−2πiγ

)
, Mg1

1 (B1) =

(
1 0

0 e−2πi(γ−α−β)

)
Mg∞

∞ (B∞) =

(
e2πiα 0
0 e−2πiβ

)
,

respectively.
The matrices Mg0

0 (B0),M
g1
1 (B1),M

g∞
∞ (B∞) are called local monodromies.

General solutions with respect to bases B0, B1, B∞ are (and therefore the
generic elements of the solutions space VS(α, β, γ))

c1F (α, β, γ; z) + c2z
1−γF (α, β, γ; z),

c3F (α, β, α+β−γ+1; 1−z)+ c4(1−z)γ−α−βF (γ−α, γ−β, γ−α−β+1; 1−z),

c5(−z)−αF (α, α+ 1− γ, α− β + 1;
1

z
) + c6(−z)−βF (β, β − γ + 1, β − α+ 1;

1

z
),

respectively, where c1, c2, c3, c4, c5, c6 ∈ C are some constants.
For example, if

c1 =
Γ(α+ β − γ + 1)Γ(γ − 1)

Γ(α− γ + 1)Γ(β − γ + 1)
, c2 =

Γ(α+ β − γ + 1)Γ(1− γ)

Γ(α)Γ(β)
,

c3 =
Γ(γ − α− β)Γ(γ)

Γ(γ − α)Γ(γ − β)
, c4 =

Γ(α+ β − γ)Γ(γ)

Γ(α)Γ(β)
,

c5 =
Γ(β − α)Γ(γ)

Γ(γ − α)Γ(β)
, c6 =

Γ(α− β)Γ(γ)

Γ(α)Γ(γ − β)
,

then

c1F (α, β, γ; z) + c2z
1−γF (α, β, γ; z) = F (α, β, α+ β − γ + 1; 1− z) ∈ B1,

c3F (α, β, α+β−γ+1; 1− z)+ c4(1− z)γ−α−βF (γ−α, γ−β, γ−α−β+1; 1− z)

= F (α, β, γ; z) ∈ B0,

c5(−z)−αF (α, α+ 1− γ, α− β + 1;
1

z
) + c6(−z)−βF (β, β − γ + 1, β − α+ 1;

1

z
)

= F (α, β, γ; z) ∈ B0.

From this we get
Theorem 1. [3], [13] 1. There exists the linear isomorphism

R : VS(α, β, γ) → VS(α, β, γ)

such that RB0 = B∞, where

R =


e−iπαΓ(β − α)Γ(γ)

Γ(γ − α)Γ(β)
e−iπ(α−γ+1) Γ(2− γ)Γ(β − α)

Γ(β − γ + 1)Γ(2− α− 1)

e−iπβ Γ(α− β)Γ(α)

Γ(γ − β)Γ(β)
e−iπ(β−γ+1) Γ(2− γ)Γ(α− β)

Γ(α− γ + 1)Γ(2− β − 1)

 .
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2. The monodromy group respect to basis B′ generated byMg0
0 (B0) andM

g∞
0 (B0)

= R−1Mg∞
∞ (B∞)R.

For any fundamental system of solutions (φ,ψ) of the equation (8) we ob-
tain two monodromy matrices M0 and M1 with respect to (φ,ψ). As mentioned
above, a change of fundamental system of solutions of (8) induces a conjugate of
monodromy representations (and vice versa.) The eigenvalue of M0 and M1 are
(1, exp(2πi(1− γ))) and (1, exp(2πi(γ − α− β))), respectively.

From (6) it follows that the conjugace classes of the monodromy representa-
tion of the equation (8) generated by M0,M1 are parametrized by three complex
parameters.

Proposition 2. (see [3], [13]) 1. The monodromy group of the hypergeomet-
ric equation (8) is irreducible if and only if none of the numbers α, β, γ−α, γ−β
is an integer.

2. The conjugate classes of the irreducible monodromy representation of
equation (8) are generated by matrices of the form

M0 =

(
1 0
1 ξ

)
, M1 =

(
1 ζ
0 η

)
, ξ ̸= 0, η ̸= 0, ζ ̸= 0,−(ξ − 1)(η − 1), (20)

M0 =

(
ξ 0
1 1

)
, M1 =

(
η ζ
0 1

)
, ξ ̸= 0, η ̸= 0, ζ ̸= 0,−(ξ − 1)(η − 1), (21)

M0 =

(
1 0
1 ξ

)
,M1 =

(
η ζ + (ξ − 1)(η − 1)
0 1

)
, ξ ̸= 0, η ̸= 0, ζ ̸= 0, (ξ−1)(η−1),

(22)

M0 =

(
ξ 0
1 1

)
,M1 =

(
1 ζ + (ξ − 1)(η − 1)
0 η

)
, ξ ̸= 0, η ̸= 0, ζ ̸= 0, (ξ−1)(η−1),

(23)

M0 =

(
1 0
0 ξ

)
, M1 =

(
η 0
1 1

)
, (24)

M0 =

(
1 0
0 ξ

)
, M1 =

(
1 0
1 η

)
, (25)

M0 =

(
ξ 0
0 1

)
, M1 =

(
η 0
1 1

)
, (26)

where ξ, η, ζ are expressed by α, β, γ in an algebraic form.

3. Examples

1. First consider the scalar differential equation, i.e. Ai be real or
complex numbers. Then T1 = (z − a1)

D, where D = 1 or D = −1. We
obtain

dy1
dz

=

(
m∑
j=1

T1(z)B1T
−1
1 (z)

z − a1
+

dT1(z)

dz
T−1
1 (z)

)
, y1=

(
B1 +D

z − a1
+

m∑
j=2

Bj

z − aj

)
y1

and if λ = (λ1, ..., λm), then the transform function will be

T (z) = (z − a1)
±|[Re(B1)]−λ1|...(z − am)

±|[Re(Bm)]−λm|.



Holomorphic Type of Vector Bundles on the Riemann Sphere Induced... 41

2. (Hypergeometric system) Consider the second order system

dy

dz
=


(
0 0
0 α + β + 1

)
z

+

(
0 0
αβ −γ

)
z + 2

+

(
0 0

−αβ −(α + β + 1) + γ

)
z − 2

 y.

(27)
i) Let α = 0, β = −2 and γ = −2 in (27). The Transform function for

canonical extension has the form (see [11], [14])

T (z) =

(
1 0

0 z(z−2)
(z+2)2

)
.

Factorization of this matrix function is (see [1], [2], [8])

T (t) =

(
1 0

0 t(t−2)
(t+2)2

)
=

1

(t+ 2)2

(
3 3t− 7
0 3

)(
t 0
0 1

)(
0 1
1 0

)
.

Hence K = (1, 0).
ii) Suppose α = 0, β = −2 and γ = −2 in (27) as above and consider

the system

dy

dz
=


(

0 0
0 −1

)
z

+

(
0 0
0 2

)
z + 1/3

+

(
0 0
0 −1

)
z + 1/2

 y.

The transform function, corresponding to the canonical extension (see [5],
[6], [9], [10]), is

T (z) =

(
1 0

0 z(z+1/2)
(z+1/3)2

)
= (z + 1/3)−2T1(z),

where T (z) ia a polynomial matrix function

T1(z) =

(
(z + 1/3)2 0

0 (z + 1/3)2z(z + 1/2)

)
.

Factorization of T1(z) on the unit circle is (see [1], [2], [8])

T1(z) =

(
t4 0
0 t2

)(
0 1 + 7

6t
+ 4

9t2
+ 1

18t3

1 + 2
3t
+ 1

6t2
0

)
.

Therefore K = (2, 0).
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iii) Let α = 0, β = −2, γ = −2 in (27) and let Λ = ((1, 0), (0, 1), (1, 1)).
Consider the system

dy

dz
=


(

0 0
0 1

)
z

+

(
0 0
−1 −1

)
z + 1/3

+

(
0 0
1 0

)
z + 1/2

 y. (28)

Then

T (z) =

(
z
4
(3z − 7)(z + 1/2) 3

4
(z + 1/3)(z + 1/2)

3
4
z(z + 1/2) 0

)
.

Factorization is

T (t) =

(
3
4

3
4
t− 7/4

0 3/4

)(
t2 0
0 t2

)(
0 1 + 5

6t
+ 1

6t2

1 + 1
2z

0

)
.

Hence K = (2, 2).
iv) Consider system (28) and suppose Λ = ((1, 0), (0, 1), (−1,−1)). Then

T (z) =


z(3z − 7)

4(z + 1/2)

3(z + 1/3)

4(z + 1/2)
3z

4(z + 1/2)
0

 .

T (z) = (z + 2)−2T1(z),

where

T1(z) =

(
(z + 2)2 0

0 z(z + 2)2(z − 2)

)
.

Factorization T1(z) has the form

T1(t) =

(
3
4

3
4
t− 7/4

0 3/4

)(
t 0
0 t

)(
0 1 + 1

3t

1 0

)
,

From this it follows, that K = (0, 0).
3. Consider the following Fuchsian system with singular points 0,±1

dy

dz
=


(

0 0
0 −1

)
z

+

(
−1/4 1/2
1/8 1/4

)
z + 1

+

(
1/4 −1/2
1/8 3/4

)
z − 1

 y.

The transform function for the canonical extension is

T (z) =

(
−2 4z
1 2z

)
,
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factorization of T (z) on the unit circle is

T (t) =

(
−2 4
1 2

)(
1 0
0 t

)
,

where |t| = 1. Hence K = (0, 1).
4. (Example 1 from [14]) Consider the following system of Fuchsian

differential equations with singular points 0, 1, 2

dy

dz
=


(

−3/2 0
1/2 −3/2

)
z − 2

+

(
1 0

−3/4 2

)
z

+

(
1/2 0
1/4 −1/2

)
z − 1

 y.

The transform function for the canonical extension has the form

T (z) =

(
(z−2)2(z−1)(2z−3)

4z2
(z−2)2(z−1)

z2
(z−2)2

2z
0

)
.

Factorizing this matrix function on |t| = 1 we obtain

T (t) =

(
t 0
0 t

)( −(t−2)2(5t−3)
4t3

(t−2)2(t−1)
t3

(t−2)2

2t2
0

)
.

From this the splitting type of canonical extension is K = (1, 1).
5. Consider second order Fuchsian system with four singular points and

valuations (1,−1), (0, 0), (0, 0), (0, 0) at the points 0, −1, 1, 1/2, respec-
tively:

dy

dz
=


(

1 0
0 −1

)
z

+

(
−1

6
1
6

−1
6

1
6

)
z + 1

+

(
−1

2
−1

2
1
2

1
2

)
z − 1

+

(
−1

3
1
3

−1
3

1
3

)
z − 1/2

 y.

The transform matrix corresponding to valuations Λ = ((0, 0), (0, 0), (0, 0),
(0, 0)) is

T (z) =

(
z−1 0
0 z

)
.

Hence K = (1,−1).
6. Consider the following nonresonant system

dy

dz
=


(

−12
8

0
1
4

−10
8

)
z

+

(
11
8

0
−1

4
12
8

)
z − 1/2

+

(
1
8

0
0 −2

8

)
z − i/2

 y.
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with singular points 0, 1/2, i/2. Transform function for canonical extension
has the form

T (z) =

(
z2

z−1/2
0

0 z2(z−i/2)
z−1/2

)
T (z) = (z − 1/2)−1T1(z),

where

T1(z) =

(
z2 0
0 z2(z − i/2)

)
.

Factorization of T1(z) is

T1(t) =

(
3
4

3
4
t− 7/4

0 3/4

)(
t3 0
0 t2

)(
0 1− i/2

t

1 0

)
,

ind(z − 1/2) = 1, therefore K = (2, 1).
The local monodromy matrices corresponding to singular points 0, 1/2, i/2

are

M1(t) =

(
−1 0
1− i i

)
,M2(t)=

( √
2+i

√
2

2
0√

2+i
√
2+2

11
−1

)
,M3(t)=

( √
2+i

√
2

2
0

0 −i

)
respectively.

Consider the triangle with vertices at points (0, 0), (1/2, 0) and (1/2, 0)
as a closed contour on the complex plane. Let f(t) piecewise constant
matrix function be given as: f(t) = M1 if t ∈ (0, 1/2]; f(t) = M2M1, if
t ∈ (1/2, i/2] and f(t) = M3M2M1, if t ∈ (i/2, 0]. Then partial indices of
the Riemann-Hilbert boundary value problem

φ+(t) = f(t)φ−(t)

equal to (2, 1).
7. The second order Fuchsian system with four singular points

dy

dz
=

(
A1

z + 1
2
− 3i

2

+
A2

z − 1
3
− 3i

2

+
A3

z − 1
2
+ i

4

+
A4

z − 1
3
+ i

3

)
y.

A1 =

(
−7

4
i

0 −1
2

)
, A2 =

(
−1

4
1
2

0 −1
3

)
, A3 =

(
5
4

−i
0 −1

3

)
, A4 =

(
3
4

−1
2

0 −1
4

)
.

The transform matrix for valuations Λ = ((0, 0), (0, 0), (0, 0), (0, 0)) (cor-
responding to canonical extension of vector bundle or system of standard
form) is

T (z) =
1

z − 1/2 + i/4

(
T11 T12

0 −T22

)
,

where
T11 = (z + 1/2− 3i/4)2(z − 1/3− 3i/2);
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T12 = (−12/11− 12i/11)(z + 1/2− 3i/4)(z − 1/3− 3i/2);

T22 = (z − 1/2 + i/4)(z + 1/2− 3i/4)(z − 1/3− 3i/2).

The partial indices of T (z) and therefore splitting type of associated
vector bundle are k1 = 1, k2 = 1.

8. Consider the following system of Fuchsian differential equations with
five singular points 0,±1,∓i (example 3 from [13]):

dy

dz
=

(
A1

z
+

A2

z + 1
+

A3

z − 1
+

A4

z + i
+

A5

z − i

)
,

where

A1 =

(
1/2 0
0 1

)
, A2 =

(
−1/8 −1/16
1/16 −1/4

)
, A3 =

(
−1/8 −1/16
1/16 −1/4

)
,

A4 =

(
−1/8 1/16
−1/16 −1/4

)
, A5 =

(
−1/8 1/16
−1/16 −1/4

)
,

or more shortly

dy

dz
=


(

1 0
0 −2

)
2z

+

(
−2 −1
1 4

)
z

8(z2 − 1)
+

(
−2 1
−1 4

)
z

8(z2 + 1)

 y.

Suppose Λ = ((1, 0), (−1,−1), (−1,−1), (−1,−1), (−1,−1)), then the trans-
form function has the form

T (z) =

(
z 0
0 1

z

)
.

After the right factorization of T (z) we obtain

T (t) =

(
0 1
1 0

)(
t−1 0
0 t

)(
0 1
1 0

)
.

and therefore the splitting type of associated holomorphic vector bundle is
(−1, 1).
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