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We investigate dynamical problem of zero approximation of hierarchical models for fluids. Applying
the Laplace transform technique, we reduce the dynamical problem to the elliptic problem which
depends on a complex parameter and prove the corresponding uniqueness and existence results.
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1 Introduction

Let a viscous incompressible fluid occupy a region Ω and let Γ = ∂Ω, the surface Γ is divide it
into two submanifolds, the so-called Dirichlet part ΓD and Neumann part ΓN , Γ = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅. For any subset M ⊂ R3, let Z(M) := M× (0,+∞). Throughout the paper,
n ≡ n(x) = (n1(x), n2(x), n3(x)) denotes the outward (with respect to Ω) unit normal vector at
the point x ∈ Γ. The surfaces Γ, ΓD, ΓN are assumed to be Lipschitz manifolds.

We denote by v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) and p(x, t) the velocity vector and pressure,
respectively, while

ekj ≡ ekj(v) :=
1
2

(∂vk

∂xj
+

∂vj

∂xk

)
is the strein velocity tensor and

σkj ≡ σ(v, p) := 2µekj(v)− δkjp

is the stress tensor in the case of viscous incompressible fluid with the viscosity coefficient µ.
Further, we introduce the stress vector and stress operator as follows

σkjnj = [2µekj(v)− δkjp]nj =:
{

T (∂, n)[v, p]
}

k
, (1)

T (∂, n) := [Tkj(∂, n)]3×4, Tkj(∂, n) := µ
[
nj

∂

∂xk
+ δkj

∂

∂n

]
, Tk4(∂, n) := −nk, (2)

where k, j = 1, 2, 3. Here and in what follows the summation over Latin subindices is meant
from 1 to 3, while over the repeated Greek subindices we assume summation from 1 to 2. It
should be noted that [v, p] is a four-dimensional vector or can also be treated as a 4× 1 column
matrix.
∗Corresponding author. Email: natalia.chinchaladze@tsu.ge

ISSN: 1512-0511 print
c© 2025 Tbilisi University Press



96 Lecture Notes of TICMI

Let us consider prismatic shells, occupying 3D domain Ω with the projection ω (on the plane
x3 = 0) and the face surfaces

x3 =
(+)

h (x1, x2) ∈ C2(ω) and x3 =
(−)

h (x1, x2) ∈ C2(ω), (x1, x2) ∈ ω.

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2) > 0, (x1, x2) ∈ ω,

is the thickness of the prismatic shell. A part of ∂ω, where the thickness vanishes, i.e., 2h = 0, is
said to be a cusped edge. We shall call it a blunt edge, if in the symmetric case (see below) ∂Ω
contains it smoothly, otherwise, i.e., the points of the cusped edge are points of nonsmoothness
of ∂Ω, we shall call it a sharp edge. Here we consider the case when 2h(x1, x2) = const.

Remark 1.1. The case h 6= conct will be considered in the forthcomming paper.

Let ω be an open, bounded and simply connected subset of R2, with a smooth boundary
` = `D ∪ `N := ∂ω, `D ∩ `N = ∅.

We investigate dynamical problem of the zeroth order approximation of hierarchical models
for fluids [1], [2]. Applying the Laplace transform technique, we reduce the dynamical problem
to the elliptic problem which depends on a complex parameter and prove the corresponding
uniqueness and existence results.

2 Title problem

In the N = 0 approximation hierarchical models for fluids we have the following governing
equations (see [1]-[3])

(h
0

p̃0),β +
[
λh

0

ṽγ0,γ

]
,β +

[
µh

(0

ṽα0,β +
0

ṽβ0,α

)]
,α +

0
Xβ = ρh

∂
0

ṽβ0

∂t
, β = 1, 2; (3)

(
µh

0

ṽ30,α

)
,α +

0
X3 = ρh

∂
0

ṽ30

∂t
, (4)

where
0

ṽj0 :=
vj0

h
,

0

p̃0 :=
p0

h
, (5)

are so called zeroth weighted moments of the velocity vector components and pressure, corre-
spondingly,

(vj0, p0)(x1, x2) :=

(+)

h (x1, x2)∫
(−)

h (x1, x2)

(vj , p)(x1, x2, x3)dx3, j = 1, 2, 3.

The stress vector components on the upper and lower face surfaces be assumed to be known

0
Xi := Q(+)

n i

√
1 +

((+)

h,1

)2
+

((+)

h,2

)2
+ Q(−)

n i

√
1 +

((−)

h,1

)2
+

((−)

h,2

)2
+ Φi0, = 1, 3, (6)

Φi0(x1, x2) :=

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Φj(x1, x2, x3)dx3.
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We naturally use known values of stress vector components Q(+)
n i

, Q(−)
n i

on the face surfaces and
the values of Fourier-Legendre expansions of velocities there. Φi0 is the zeroth order moments
of the volume forces.

Since we consider incompressible fluid, from the following equation

divv = 0

for the weighted moments we have ([1], [3])

0

ṽγ0,γ = 0. (7)

From (3), bearing in mind (7), we obtain

(h
0

p̃0),ββ = −
0
Xβ,β, .

System (3)-(4), (7) may be rewritten as follows

(h
0

p̃0),i +µh∆2

0

ṽi0 +
0
Xi = ρh

∂
0

ṽi0

∂t
, (8)

0

ṽγ0,γ = 0, (9)

here ∆2 is a two dimensional Laplace operator.
If h = const we may rewrite (8)-(9) in the following vector form

Af [
0

ṽ] := −µf ∆2

0

ṽ − ρ
∂

0

ṽ

∂t
+ grad

0

p̃ = F in Z(ω), (10)

div
0

ṽ = 0 in Z(ω), (11)

where F :=
0
X/h.

For any subset M⊂ R2, let Z(M) := M× (0,+∞).
Let us denote by L2, W r

2 and Hs
2 = Hs with r ≥ 0 and s ∈ R the Lebesgue, SobolevSlo-

bodetski and Bessel potential function spaces, respectively. Recall that W r
2 = Hr for r ≥ 0.

LetM0 be a smooth surface without boundary. For a smooth proper submanifoldM⊂M0,
we denote by H̃s(M) the subspace of Hs(M0),

H̃s(M) := {g : g ∈ Hs(M0), suppg ⊂M},

while Hs(M) stands for the space of restrictions on M of functions from Hs(M0),

Hs(M) := {rMf : f ∈ Hs(M0)},

where rM is the restriction operator onto M. For an open region ω0, throughout the talk,
D(ω0) stands for the space of C∞smooth test functions with compact support in ω0. Denote

rMH̃(M) =:
o
H(M).

We formulate the following Problem

Problem (A): Find vectors [
0

ṽ], [
0

p̃] in Z(ω) satisfying
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the differential equations (10), (11);
the initial condition

0

ṽ(x, 0) = 0, x := (x1, x2) ∈ ω; (12)

the boundary conditions on Z(`)

{
0

ṽ(x, t)}+ = 0 , (x, t) ∈ Z(`(D)), (13)

{T (∂, n)[
0

ṽ(x, t),
0

p̃(x, t)]}+ = g(N)(x, t) , (x, t) ∈ Z(`(N)), (14)

where the symbols { · }+ denote the interior one-sided limits with respect to the spatial variable
x on `.

Function spaces for the boundary and transmission data, and for solution vectors will be
specified below.

For sufficiently smooth vector functions and smooth domains, by standard arguments we
easily derive the following Green’s formulas ( see, e.g.,[5], [6], and also compare [4]):

1
2

d

dt

∫
ω

ρ

∣∣∣∣0ṽ∣∣∣∣2 dx +
∫
ω

2µ

3∑
i,j=1

e2
ij0(

0

ṽ)dx

−
∫
`

{T (∂, n)[
0

ṽ,
0

p̃]}+ · {
0

ṽ}+ d` =
∫
ω

[−µ∆2

0

ṽ + ρ
0̇

ṽ + grad
0

p̃] ·
0

ṽ dx, (15)

Remark that the above Green’s formula by standard limiting procedure can be generalized
to Lipschitz domains and to vector–functions from the corresponding Sobolev-Slobodetski and
Bessel potential spaces. In particular, they remain valid if ` is Lipschitz surface and

0

ṽ(·, t), ∂
0

ṽ(·, t)
∂xα

, A[
0

ṽ,
0

p̃](·, t) ∈ C2([0,∞), L2(ω)). (16)

In this case, the surface integrals in Green’s formula should be replaced by dualities 〈·, ·〉 between
the corresponding spaces. In addition to the conditions stated in the formulation of Problem

(A), we require that solution vector [
0

ṽ,
0

p̃] satisfy imbedding relations (16).
The following uniqueness result can be easily proved:

Theorem 2.1. The homogeneous mixed Problem (A) has only the trivial solution in the space
of vector functions satisfying the conditions (16).

We recall that for an original function f satisfying the growth condition |f(t)| ≤ c eat with
a ∈ R, the Laplace transform reads as

L[f ] =

∞∫
0

f(t) e−τt dt, τ = σ1 + iσ2 ∈ C, < τ = σ1 > a,

and if f ∈ Ck([0,+∞)), then

L[f (k)] =

∞∫
0

f (k)(t) e−τt dt = τkL[f ]− f(0)τk−1 − f ′(0)τk−2 − · · · − f (k−1)(0). (17)



Vol. 26, 2025 99

Let us apply formally the Laplace transform to the initial-boundary-transmission dynamical
problem (A) in order to reduce it to an elliptic problem depending on the complex parameter
τ . To this end, we introduce the notation

V (x, τ) := L[
0

ṽ(x, ·)], P (x, τ) := L[
0

p̃(x, ·)]. (18)

Taking into account the homogeneous initial conditions (12) and formula (17), we get from (10)
and (11):

A[V, P ] := −µ∆2V + % τ V + gradP = X in ω, (19)

div V = 0 in ω, (20)

where V = (V1, V2, V3), and
X(x, τ) := L[F (x, ·)] .

Analogously, boundary conditions (13), (14) can be written as

{V }+ = 0 on `(D), (21)
{T (∂, n)[V, P ]}+ = G(N) on `(N) , (22)

where the stress operator T (∂, n) is defined by (2) and

G(N)(x, τ) := L[g(N)(x, ·)].

Thus, by this approach we have reduced formally the original dynamical initial boundary
problem (A) to the elliptic problem (19)-(22) depending on the complex parameter τ , which we
refer as the pseudo-oscillation boundary problem (B).

In what follows, first we investigate the problem (B), prove the uniqueness and existence
results, analyze the regularity of solutions and its dependence on the parameter τ and afterwards
we return to the original dynamical problem via the inverse Laplace transform.

Uniqueness

We look for solution vectors [V, P ] of problem (B) in the Bessel potential spaces, in particular,
we assume that

V (· , τ) ∈ H1(ω), P (· , τ) ∈ L2(ω) , (23)

and
X(· , τ) ∈ L2(ω), G(N)(· , τ) ∈ H−1/2(`(N)) . (24)

In this case, the Dirichlet type boundary and transmission conditions are understood in the usual
trace sense, while the Neumann type conditions are understood in the generalized functional
sense. Let us recall that the generalized trace functionals for the stress vectors, corresponding
to vector V ∈ H1(ω) with

AV ∈ L2(ω), divV = 0, (25)

are defined with the help of the relations (Green’s identities)

〈{(T (∂, n)[V, P ])j}+, {Ṽj}+〉`

:=
∫
ω

[ % τ Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx−
∫
ω

[A[V, P ]]j Ṽj dx. (26)
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Here Ṽ ∈ H1(ω) with divṼ = 0 in Ω are arbitrary vectors. The symbol 〈 · , · 〉M denotes the du-
ality relation between the spaces H−1/2(M) and H1/2(M), which generalizes the usual L2(M)
inner product. By these relations the generalized traces of the stress vector {T (∂, n)[V, P ]}+ ∈
H−1/2(`) are correctly determined. Note that for arbitrary vector functions X = (X1, X2, X3) ∈
L2(M) and Y = (Y1, Y2, Y3) ∈ L2(M) we have

〈X , Y 〉M =
∫
M

Xj Yj dM.

The investigation of the problem under consideration we start with the following uniqueness
result.

Theorem 2.2. Let τ = σ1 + iσ2 with σ1 > σ0 > 0. Then the homogeneous problem (B) has
only the trivial solution.

Proof. From (26) we obtain∫
ω

[ % τ Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx

=
∫
ω

[−µ∆2V + % τ V + gradP ]j Ṽj dx− 〈{(T (∂, n)[V, P ])j}+, {Ṽj}+〉`. (27)

Now, let [V, P ] be a solution of the homogeneous problem (B). Evidently, the conditions (23)
and (25) are satisfied and we can apply the generalized Green formulas (15) and (26), and
the resulting relation (27). From (27) with Ṽ = V , in view of the homogeneous boundary-
transmission conditions of the problem, we derive∫

ω

[ % τ Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx = 0. (28)

Separate the real part of the equality (28)∫
ω

[ % σ1 Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx = 0. (29)

Taking into account the inequalities σ1 > 0, from (29) we conclude that V = 0 in ω. Then
it follows from (19) that P = C = const in ω and, therefore, {T (∂, n)[V, P ]} = −C n on `.
Finally, the homogeneous Neumann condition (22) with G(N) = 0 on `(N) implies C = 0, which
completes the proof.

Existence

Recall that ω̄ = ω ∪ ` and define the vector-function space

H1(ω, `(D)) :=
{

Φ = (Φ1,Φ2,Φ3) ∈ H1(ω) : {Φ}+
`(D) = 0, rωΦ = Φ, div Φ = 0

}
. (30)

We recall also that rM stands for the restriction operator on M. The inner product and
the norm in the space H1(ω, `(D)) by definition coincide with the inner product and the norm
of the space H1(ω). Therefore, H1(ω, `(D)) is a Hilbert space.
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Further, let W, W̃ ∈ H1(ω, `(D)) and denote, for convenience and to adopt the notation to
our basic problem (B),

W = rωW ∈ H1(ω), W̃ = rωW̃ ∈ H1(ω). (31)

and introduce the sesquilinear form

Bτ (W, W̃ ) :=
∫
ω

[ % τ Wj W̃j + 2µ ekj(W ) ekj( W̃ ) ] dx (32)

=
∫
ω

[ % τ Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx.

Next we introduce the anti-linear form

Fτ (W̃ ) :=
∫
ω

Xj W̃j dx + 〈G(N)
j , {W̃j}+ 〉`(N) (33)

=
∫
ω

Xj Ṽj dx + 〈G(N)
j , {Ṽj}+ 〉`(N) .

where 〈·, ·〉`(N) denotes the duality between the spaces H−1/2(`(N)) and H̃1/2(`(N)). The duality
is well defined since G(N) ∈ H−1/2(`(N)) and {W̃}+

` = {Ṽ }+
` ∈ H̃1/2(`(N)). By the Schwartz

inequality and the trace theorem one can easily show that the functional Fτ : H1(ω, `(D)) → C
is continuous.

Theorem 2.3. Let τ = σ1 + iσ2 with σ1 > σ0 > 0. The sesquilinear form

Bτ : H1(ω, `(D))×H1(ω, `(D)) → C

is bounded and coercive, i.e., there are positive constants C1(τ) and C2(τ) such that

| Bτ (W, W̃ ) | ≤ C1(τ) ||W ||H1(ω) || W̃ ||H1(ω), (34)

< [Bτ (W,W ) ] ≥ C2(τ) ||W ||2H1(ω), (35)

for all W, W̃ ∈ H1(ω, `(D)).

Proof. By Schwartz inequality from (32) we derive

| Bτ (W, W̃ ) | ≤ c3 |τ | ||V ||L2(ω) || Ṽ ||L2(ω) + c4 ||V ||H1(ω) || Ṽ ||H1(ω)

≤ c4 ||W ||H1(ω) || W̃ ||H1(ω) + c3 |τ | ||W ||L2(ω) || W̃ ||L2(ω)

≤
[
c3 | τ | + c4

]
||W ||H1(ω) || W̃ ||H1(ω), (36)

which proves (34) with

C1(τ) = c3 | τ | + c4. (37)

Here the positive constants ck, k = 1, 4, do not depend on τ .
Now we show the coercivity property.
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Taking the real pert of (32) and applying (36), we get

< [Bτ (W,W ) ] =
∫
ω

[ 2µ ekj(V ) ekj( V ) + % σ1 Vj Vj ] dx

=
∫
ω

[
2µ

3∑
k,j=1

|ekj(W )|2 + % σ1 |W |2
]
dx

≥
∫
ω

[
2µ

3∑
k,j=1

|ekj(W )|2 + % σ1 |W |2
]
dx

≥
∫
ω

[
c5(τ)

3∑
k,j=1

|ekj(W )|2 + c6(τ) |W |2
]
dx,

where
c5(τ) = 2 µ > 0, c6(τ) = σ1 % > 0. (38)

Since W ∈ H1(ω) and {W}+
`(D) = 0 by the well known Korn’s inequality we have (see, e.g., [7])

∫
ω

3∑
k,j=1

|ekj(W )|2 dx ≥ c7 ||W ||2H1(ω), (39)

where c7 is a positive constant depending only on the geometrical parameters of the domain ω.
Finally we arrive at the inequality

< [Bτ (W,W ) ] ≥ c5(τ) c7 ||W ||2H1(ω) + c6(τ) ||W ||2L2(ω), (40)

which proves (35) with
C2(τ) = c7 2 µ, (41)

where c7 does not depend on τ . This completes the proof.

Now let us consider the following variational problem: Find a vector W ∈ H1(ω, `(D))
satisfying the equation

Bτ (W, W̃ ) = Fτ (W̃ ) for all W̃ ∈ H1(ω, `(D)). (42)

We have the following existence results.

Theorem 2.4. Let τ = σ1 + iσ2 with σ1 > σ0 > 0. The variational problem (42) is uniquely
solvable and for the solution vector there holds the inequality

||W ||2H1(ω) ≤ C3(τ)
(
||X||L2(ω) + ||G(N)||H−1/2(`(N))

)
, (43)

where C3(τ) is a positive constant depending on τ and on the material parameters, and

0 < C3(τ) ≤ |τ |2

σ1
C4 ≤

|τ |2

σ0
C4 (44)

with C4 independent of τ .
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Proof. Existence and uniqueness are the direct consequences of the Theorem 1.3 and the Lax-
Milgram theorem since the functional Fτ given by (33) is bounded. Indeed,

| Fτ (W ) | ≤ ||X ||L2(ω) ||V ||L2(ω) + ||G(N)||H−1/2(`(N)) ||r`(N) {V }+||H1/2(`(N))

≤ ( ||X ||L2(ω) ) ||W ||L2(ω) + ||G(N)||H−1/2(`(N)) ||{W}+||H1/2(`)

≤ ( ||X ||L2(ω) ) ||W ||H1(ω) + δ1 ||G(N)||H−1/2(`(N)) ||W ||H1(ω)

≤ ( ||X ||L2(ω) + δ1 ||G(N)||H−1/2(`(N)) ) ||W ||H1(ω),

where δ1 depends only on the geometry of the domain ω and corresponds to the trace estimate,
i.e.,

||{W}+||H1/2(`) ≤ δ1 ||W ||H1(ω). (45)

Now, the inequality (35) completes the proof with C3(τ) = [ C2(τ) ]−1δ2, where δ2 = max{1, δ1}.

Further, we prove the following assertion.

Theorem 2.5. Let W ∈ H1(ω, `(D)) solve the variational problem (42) and let

V := rω W. (46)

Then there exists a unique function P ∈ L2(ω), such that the vector [V, P ] solve the problem
(B).

Proof. Let us assume that V f solve the variational problem, i.e.,∫
ω

[ % τ Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx =
∫
ω

Xj Ṽj dx + 〈G(N)
j , {Ṽj}+ 〉`(N) . (47)

We have to verify the relations (19)-(22). Note that the conditions (21) and (22) are satisfied
automatically due to the definition of the space H1(ω, `(D)).

We start with the differential equations (19) and (20). The arguments are standard. Taking
in (42) that

W̃ = Ṽ ∈ D(ω) ∩H1(ω, `(D))

we arrive at the equations:

Bτ (W, Ṽ ) ≡
∫
ω

[ % τ Wj Ṽj + 2µ ekj(W ) ekj( Ṽ ) ] dx =
∫
ω

Xj Ṽj dx,

which, in view of (46), can be rewritten as∫
ω

[ % τ Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx =
∫
ω

Xj Ṽj dx.

In turn these equations are equivalent to the following distributional relations

〈−µ∆V + % τ V −X , Ṽ 〉ω = 0. (48)
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The from (48) it follows that there exists a function P1 ∈ L2(ωf ) such that (19) holds in the
distributional sense (for details see [8], Ch. I, Subsection).

The equation (19) is understood in the distributional sense. Note that the function P1 is
defined modulo a constant summand.

To show the condition (21) we proceed as follows.
From Green’s formulas (15) and (26) we easily derive

〈{(T (∂, n)[V, P1])j}, {Ṽj}〉` =
∫
ω

[ % τ Vj Ṽj + 2µ ekj(V ) ekj( Ṽ ) ] dx−
∫
ω

Xj Ṽj dx. (49)

Since divṼ = 0 in ω, we have ∫
`(N)

{Ṽ }+ · n d` = 0, (50)

where n is the outward normal to `. Therefore, from equation (50) we conclude

{(T (∂, n)[V, P1])j}+ = G
(N)
j + C1 nj , j = 1, 2, 3, on `(N), (51)

where C1 is an arbitrary constant.
Hence,

{(T (∂, n)[V, P1 + C])}+ = G(N) on `(N), (52)

Thus, we have shown that if V solve the variational problem (42), then [V, P ] with P = P1+C
solve the problem (B). Due to the uniqueness Theorem 1.2, we conclude that the pressure
function P = P1 + C is defined uniquely.

Existence results for the dynamical problem.

Here we apply the inverse Laplace transform and construct a solution to the original dynamical
problem. Let V (x, τ), and P (x, τ) be a solution to the Problem (B) whose existence and
uniqueness we have shown in the previous subsection.

To demonstrate our approach, for simplicity we assume that the data F (x, t), and g(N)(x, t)
of the original dynamical Problem (A) are C∞-smooth in the regions: ω × [0,+∞), and `(N) ×
[0,+∞), respectively, vanish identically for t ∈ [0, ε) with some positive ε and are polynomially
bounded in t as t →∞. Then it follows that their Laplace transforms X(x, τ) and G(N)(x, τ),
which are the data of the BVP (B), are analytic with respect to τ in the complex half plane
<τ = σ1 > 0 and decay at infinity faster than any power of |τ |−1.

V (·, τ) and P (·, τ) are analytic with respect to τ in the same complex half plane <τ = σ1 > 0
and by one of the above

||V (·, τ)||H1(ω) ≤ C |τ |−m, (53)

where the positive constant C do not depend on τ and m is an arbitrary natural number.
Since the pair [V (·, τ), P (·, τ)] solves equations (19)-(20), we have

∆ P (x, τ) = divX(x, τ), x ∈ ω. (54)
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Therefore, if divX(·, τ) ∈ Hr(ω), then P (·, τ) ∈ Hr+2(ω∗) for arbitrary r ≥ 0 and an arbitrary
proper subdomain ω∗ of ω, such that ω∗ ⊂ ω. In particular, if div X(·, τ) ∈ C∞(ω), then
P (·, τ) ∈ C∞(ω) ∩ L2(ω).

Moreover, in addition, if we assume that the surfaces ` and ` := ∂`(D) are C∞-smooth, then
by the interior and boundary regularity results, we have the imbedding ([8]):

V (·, τ) ∈ C∞(ω \ `) ∩H1(ω),

P (·, τ) ∈ C∞(ω \ `) ∩ L2(ω).
(55)

One can easily show that

||P (·, τ)||L2(ω) ≤ C∗ |τ |−m, ||P (·, τ)||H1(ω̃∗) ≤ C∗ |τ |−m, (56)

where the positive constant C∗ does not depend on τ , m is an arbitrary natural number and
ω̃∗ ⊂ [ω \ ` ].

Denote

v(x, t) =
1

2πi

σ1+i∞∫
σ1−i∞

V (x, τ) eτt dτ, x ∈ ω, (57)

p(x, t) =
1

2πi

σ1+i∞∫
σ1−i∞

P (x, τ) eτt dτ, x ∈ ω. (58)

By the Minkowski inequality[ ∫
ω1

{∫
ω2

|f(x, y)| dy
}p

dx
] 1

p ≤
∫

ω2

{∫
ω1

|f(x, y)|p dx
} 1

p
dy, p > 1,

we get

||v(·, t)||H1(ω) ≤
eσ1t

2π

∞∫
−∞

||V (·, τ)||H1(ω) dσ2 < ∞, (59)

||p(·, t)||L2(ω) ≤
eσ1t

2π

∞∫
−∞

||P (·, τ)||L2(ω) dσ2 < ∞. (60)

Now, let us check that the pair [v(x, t), p(x, t)], defined by (57)-(58), solve the original problem
(A).

Indeed, the differential equations (10)-(11) can be verified by direct differentiation. The
boundary conditions (13)-(14) can be obtained by taking the corresponding traces on the inter-
face and on the boundary.

It remains to show the initial conditions hold. By passing to the limit as t → 0, from (57)
we have

v(x, 0) =
1

2πi

σ1+i∞∫
σ1−i∞

V (x, τ) dτ. (61)

Now, by the decay condition (53), we derive that v(·, 0) = 0 in ω.

Remark 2.6. For Lipschitz boundaries, in particular, for piecewise smooth boundaries the
same formulas (57)-(58) give solutions to the dynamical problem in the appropriate sense.
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