iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti

zust da sabunebismetyvelo mecnierebaTa fakulteti

 

sadoqtoro programa gamoyenebiT maTematikaSi

 

sadoqtoro programis saxelwodeba: kerZowarmoebuliani diferencialuri ganto­le­be­bi da maTi gamoyenebebi uwyvet garemoTa meqanikaSi (gamoyenebiTi maTematika)

 

misaniWebeli akademiuri xarisxi: filosofiis doqtori gamoyenebiT maTematikaSi _ Ph. D. in Applied Mathematics.

 

programis xelmZRvanelebi:

prof. giorgi jaiani (iv. javaxiSvilis saxelobis Tbi­lisis saxelmwifo uni­ver­si­te­tis zust da sabunebismetyvelo mecnierebaTa fakulteti, i. vekuas sax. gamoyenebiTi ma­Te­matikis instituti).

prof. robert gilberti (delaveris uni­ver­si­te­ti, maTematikur mecnierebaTa depar­ta­menti).

 

programaSi monawile profesori:

sergo xaribegaSvili (iv. javaxiSvilis saxelobis Tbi­lisis saxelmwifo uni­ver­si­te­tis zust da sabunebismetyvelo mecnierebaTa fakulteti).

 

doqtoranturaSi Caricxva: misaRebi gamocda (gasaubreba) sa­ma­gistro programis far­gleb­Si.

doqtorantebis raodenoba _ 2, swavlebis xangrZlivoba 4 an 5 weli.

 

winamdebare programiT doqtoranturaSi CaricxvisTvis aucilebeli winapirobebi: ma­gis­tris (an masTan gaTanab­re­bu­li) xarisxi maTematikaSi, gamoyenebiT maTematikaSi, fi­zi­ka­Si. kerZowarmoebuliani diferencia­lu­­ri ganto­le­be­bisa da uwyvet garemoTa meqanikis me­Todebis safuZvlebis codna. doqtorants unda SeeZlos inglisur enaze samecniero li­­te­ra­tu­ris gamoyeneba da saubari.

 

swavlebisa da samecniero kvlevis materialur-teqnikuri baza: erTi samuSao oTaxi Tsu i. vekuas sax. gamoyenebiTi maTematikis institutSi, internetis qselSi CarTuli er­Ti per­sonaluri kompiuteri, institutis samecniero biblioTeka.

 

programis sakvalifikacio daxasiaTeba: programis mizania codnis gaRrmaveba da mecni­e­ruli kvlevebis Catareba: gadagvarebuli kerZowarmoebuliani diferen­ci­a­lu­ri ganto­le­be­bis TeoriaSi; sxvadasxva ganzomilebebiani veqtoruli velebis urTierT­qme­debis amocanaTa TeoriaSi.

gadagvarebuli kerZowarmoebuliani diferen­ci­a­lu­ri ganto­le­be­bi maTematikuri mode­li­rebis gvxvdeba sivrcul konstruqciebSi nawilobriv Ca­mag­re­bu­li napirebiT, rogo­ri­caa stadionebis saxuravebi, TviTmfrinavebis frTebi, wyal­qveSa na­vebis frTebi da a. S., gar­da amisa, manqanaTmSeneblobaSi (saWreli da saran­da­vi Car­xe­bi), kos­mo­navtikaSi, tur­bi­nebSi da sxva sainJinro sferoebSi (magali­Tad, kaS­xlebSi). ase­Ti gantolebebis zogi­er­Ti klasi ar ifareba gadagvarebuli kerZowarmoebuliani di­ferencialuri ganto­le­be­bis­Tvis arsebuli zogadi TeoriiT.

mravali fizikuri da meqanikuri modelis aRweris dros wamoiWreba sxvadasxva gan­zo­milebiani veqtoruli velebis urTierTqmedebis amocanebi, roca garemos erTi na­wi­li xa­siaTdeba k-ganzomilebiani veqtor-funqciiT, xolo meore nawili _ n-gan­zo­mi­le­biani veq­tor-funqciiT (magaliTad, siTxisa da myari struqturis urTierTqmedebis amo­cana drekadi winaRobis garsdenisas; drekadi winaRobis mier akustikuri da eleq­tro­mag­ni­turi talRebis gabneva; drekadi sxeulisa da seismuri talRebis ur­Ti­erT­qme­de­ba da sxv.).

programis saswavlo komponenti exeba kerZowarmoebuliani diferencia­lu­­ri ganto­le­be­­bisa da uwyvet garemoTa meqanikis meTodebs.

kvleviT komponentSi gaTvaliswinebulia: gadagvarebuli kerZowarmo­e­bu­li­ani dife­ren­­ci­­a­­lu­ri ganto­le­bebis zogierTi klasis Seswavla. maTTvis dasmuli sasazRvro amo­ca­nebis koreqtulobis dadgena Sesabamis funqciur sivrceebSi; amonaxsnis povna ri­cx­vi­Ti meTodebiT an efeqturi saxiT. sxvadasxva ganzomi­le­bi­a­ni veqtoruli velebis ur­Ti­erT­qmedebis amocanebis (kerZod, siTxeebisa da myari struq­tu­ris urTierTqmedebis amo­canis) dasma da maTTvis koreqtulobis sakiTxis ga­mok­vleva; amonaxsnis povna ricxviTi me­TodebiT an efeqturi saxiT.

 

sadisertacio Temis arCevis Sesaxeb: sadoqtoro programis mixedviT doqtorants Se­uZ­lia, sadisertacio Tema airCios zemoaRniSnuli problematikis farglebSi, gadagva­re­bis mqone kerZowarmo­e­bu­li­an diferen­ci­a­lu­r ganto­le­bebSi an sxvadasxva ganzomi­lebi­a­ni veqtoruli velebis urTierTqmedebis amocanaTa TeoriaSi. sadisertacio Temebi Tavi­si dasabuTebiT da gadasawyveti problemis aRwerilobiT doqtorantebs miewodebaT swav­lebis me-2-e semestris dasrulebamde. saswavlo komponentis dasrulebis Semdeg doq­­toranti valdebulia, Caebas saswavlo-samecniero seminaris _ “kerZowarmo­e­bu­li­ani diferen­ci­a­lu­ri ganto­le­bebi da maTi gamoyenebebi uwyvet garemoTa meqanikaSi” _ mu­Sa­o­ba­Si.

 

doqtoranturadamTavrebulis SesaZleblobebi: programis warmatebiT dasrulebis Sem­Txve­vaSi doqtorants ecodineba qarTveli da ucxoeli maTematikosebis miRwevebi, rom­le­bic gadagva­re­bis mqone kerZowarmo­e­bu­li­an diferen­ci­a­lu­r ganto­le­bebTan da sxva­da­sxva ganzomi­lebi­a­ni veqtoruli velebis urTierTqmedebis amocanebTan da monaTesave sa­ki­TxebTan arian da­kav­Si­re­bu­li. doqtorants eqneba damoukideblad mecnieruli kvlevis unar-Cvevebi. mas SeeZleba sxva­dasxva bunebrivi procesebis maTematikuri modelis ageba da gamokvleva.

 

dasaqmebis sferoebi: ganaTleba, mecnieruli kvleva, saxelmwifo da kerZo struqtu­re­bi.

 

sadoqtoro programis struqtura: swavlebis pirveli weli (2 semestri) daeTmoba programis saswavlo komponentis mTlianad Sesrulebas (60 krediti).

 

 

1. specialobiT kursebis moduli

 

1.1. gamoyenebiTi maTematikis Sesavali

krediti: 6

kursis aRwera: im ideebisa da meTodebis Sesavali, romlebic sxvadasxva fi­zikuri prob­lemebis amosaxsnelad gamoiyenebian. Cveulebrivi diferencialuri ganto­le­be­bis ara­­wrfi­vi sitemebis mdgradoba. Sturm-liuvilis amocanebi da grinis funqciebi. tal­Ris, siT­bogamtareblobisa da laplasis gantolebebi. zogierTi arawrfivi kerZo­war­mo­e­bu­­li­a­ni diferencialuri ganto­le­bis elementaruli analizi. specialuri funqciebi, asim­­pto­turi gaSlebi da SeSfoTebaTa Teoria.

winapiroba: kalkulusi, Cveulebrivi diferencialuri ganto­le­be­bisa da kerZo­war­mo­e­bu­liani diferencialuri ganto­le­be­bis samagistro kursebi.

 

1.2. uwyvet garemoTa meqanikis maTematikuri modelebi

krediti: 5+5

kursis aRwera: drekadobis da plastikurobis Teoriis da hidrodinamikis samgan­zo­mi­­le­biani, organzomilebiani da erTganzomilebiani modelebi.

winapiroba: kalkulusi, Cveulebrivi diferencialuri ganto­le­be­bisa da kerZo­war­mo­e­bu­li­ani diferencialuri ganto­le­be­bis samagistro kursebi.

 

1.3. kerZo­war­mo­e­bu­liani diferencialuri ganto­le­be­bi I

krediti: 4

kursis aRwera: kerZo­war­mo­e­bu­liani diferencialuri ganto­le­be­bisTvis, rogorc saw­yi­si, ise sasazRvro amocanebis kvlevisa da amoxsnis meTodebi. bunebrivi mov­le­ne­bis Tu procesebis maTematikur modelebTan dakavSirebul gantolebaTa sistemebis gamokvlevis teq­nika. gansaxilveli Temebi Seicaven elifsuri, hiperboluri da para­bo­lu­ri sis­te­me­bis kvlevas rogorc klasikuri, ise variaciuli meTodebiT.

winapiroba: 1.1 kursi.

 

1.4. kerZo­war­mo­e­bu­liani diferencialuri ganto­le­be­bi II

krediti: 6

kursis aRwera: koSis amocana da sawyis-sasazRvro amocanebi hiperboluri da para­bo­lu­ri gantolebebisa da sistemebisTvis. sasazRvro amocanebi elifsuri gantolebisTvis. aq­centi gakeTdeba sobolevis sivrcesa da naxevarjgufTa meTodze.

winapiroba: 1.1 da 1.3 kursebi.

 

1.5. homogenizaciis Teoria

krediti: 5

kursis aRwera: meore rigis elifsuri operatorebis homogenizacia. diferencialuri operatoris G-krebadoba. homogenizaciuri Teoriis speqtraluri amocanebi. homoge­ni­za­cia wrfiv drekadobis TeoriaSi.

winapiroba: 1.1, 1.4 da 2.2 kursebi.

 

1.5a. siTxeebisa da myari sxeulebis urTierTqmedebis amocane­bi

krediti: 5

kursis aRwera: Camagrebuli da moZravi sazRvrebi. transmisiis pirobebi. arsebobisa da er­TaderTobis Teoremebi. gamoyenebebi uwyvet garemoTa meqanikaSi.

winapiroba: 1.2 kursi.

 

1.6. ricxviTi meTodebi siTxeebisa da myari sxeulebis urTierTqmedebis amocanebSi

krediti: 5

kursis aRwera: 1.6-Si ganxiluli problemebis ricxviTi meTodebi.

winapiroba: 1.2 da 1.6 kursebi.

 

1.7. gadagvarebuli kerZowarmoebuliani diferencialuri ganto­le­be­bi

krediti: 6

kursis aRwera: sasazRvro amocanebi Sereuli tipis gantolebebisTvis, gantolebebi ara­uar­yo­fi­Ti maxasiaTebeli formiT, kerZod, rigis gadagvarebiT.

winapiroba: 1.2, 1.3 da 1.4 kursebi.

 

1.8. wamaxvilebuli Reroebis, firfitebisa da garsTa Teoriis Sesavali

krediti: 6

kursis aRwera: wamaxvilebuli Reroebis, firfitebisa da garsebis ierarqiuli mode­le­bi. eiler-bernulis wamaxvilebuli Reroebi da kirxhof-liavis wamaxvilebuli fir­fi­tebi.

winapiroba: 1.2 da 1.3 kursebi.

 

1.9. wamaxvilebuli drekadi mya­ri sxeulebis da siTxeebis urTierTqmedebis amocane­bi

krediti: 3

kursis aRwera: idealuri da blanti siTxeebis kirx­hof-liavis wamaxvilebul firfi­ta­ze moqmedebis Sedegad gamowveuli rxeva.

winapiroba: 1.2, 1.3 da 1.8 kursebi.

 

 

2. safakulteto kursis modulebi

 

2.1. ricxviTi meTodebi kerZowarmoebuliani diferencialuri ganto­le­be­bisTvis

krediti: 6

kursis aRwera: ricxviTi sqemebis SeTanxmebulobis, mdgradobis da kre­ba­do­bis saki­Txe­­bis Sesavali. dekompoziciis Teoremebi. sasrulelementebiani da sasrulsxvaobiani sqe­mebi da maTi gamoyenebebi fundamenturi kerZowarmoebuliani diferencialuri ganto­le­­be­bisTvis. pirdapiri da Sebrunebuli sasazRvro integraluri gantolebebis meTodi.

winapiroba: 1.3 da 1.4 kursebi.

 

2.2. funqcionaluri analizi

krediti: 6

kursis aRwera: veqtoruli sivrceebi, wrfivi normirebuli sivrceebis Teoriis fun­da­menturi Sedegebi hilbertis sivrceTa Teoriaze yuradRebis gamaxvilebiT. speqtra­lu­ri Teorema da misi gamo­ye­ne­ba integralur da diferencialur gantolebebSi.

winapiroba: kalkulusi

 

2.3. maTematikuri fizikis modelebi

krediti: 6

kursis aRwera: funqcionaluri sivrceebi, sasazRvro amocanaTa va­ri­aciuli formu­li­­reba, risis da laqs-milgramis Teoremebi, proeqciuli meTodebi, ko­er­citulobis amo­cana (emyareba gordingis utolobas), amonaxsnTa sigluve.

winapiroba: 2.2 kursi.

 

2.4. kompleqsuri analizi

krediti: 6

kursis aRwera: kompleqsuri ricxvebi; analizuri funqciebi; elementarul funqcia­Ta geometria; integralebi; ricxviTi mwkrivebi; warmomqmneli gulebi, harmoniuli zoma.

winapiroba: kalkulusi

 

3. Tanamedrove saganmanaTleblo-meTodologiuri kursebis moduli (fakultetis sabWos Sexedulebisamebr)

 

SeniSvna 1. zemoT aRniSnuli kursebis detaluri silabusebi xelmisawvdomia Semdeg veb-saitze:

http://www.viam.science.tsu.ge/others.htm

 

SeniSvna 2. moduli 1-dan arCeuli unda iyos kursebi 30 kreditis farglebSi. mo­du­li 2-dan arCeuli unda iyos kursebi 10 kreditis farglebSi. jamSi 6 kreditze meti kursebi mo­dul 3-dan saWiroebs SeTanxmebas fakultetis sabWosTan.

 

sakanditato zepiri gamocda unda Cabardes fakultetis aranakleb 3 wevrisgan Sem­dgar komisias. silabusi unda SemuSavdes studentis mier Sesabamis komisiasTan erTad da damtkicebuli iqnes xarisxis mimniWebeli komisiis mier. gamocda unda Seicavdes pir­veli modulis ori kursis masalas mainc.

disertacia _ 120 krediti

 

programaSi monawileTa biografiuli monacemebi:

 

CV

 

gvari, saxeli, mamis saxeli    jaiani giorgi vladimeris Ze

 

dabadebis TariRi da adgili:  19.06.1945, Tbilisi  

 

samuSao adgili        Tsu i.vekuas sax. gamoyenebiTi maT. instituti

 

misamarTi: Tbilisi 0186, universitetis q.2

 

tel. 308098, 303040     veb gverdi: http://www.viam.science.tsu.ge/curi/jaiani

faqsi: 306645          el. fosta: george.jaiani@gmail.com, jaiani@viam.sci.tsu.ge

 

ojaxuri mdgomareoba:    meuRle, ori Svili da sami SviliSvili

sacxovrebeli adgili

misamarTi: Tbilisi, 0162, bagebi, korpusi III, bina 2

tel: 290470                                            mobiluri: 893319564

 

TariRi

   2006-dan                   dRemde

damqiraveblis dasaxeleba

Tsu i.vekuas sax. gamoyenebiTi maT. instituti

Tanamdeboba

direqtori

TariRi

   2006-dan                   dRemde

damqiraveblis dasaxeleba

Tsu zusti da sabunebismetyvelo mecnierebaTa instituti

Tanamdeboba

asocirebuli profesori

TariRi

   1987-dan                   2006-mde

damsaqmebelis dasaxeleba

Tsu i.vekuas sax. gamoyenebiTi maT. instituti

Tanamdeboba

direqtoris moadgile samecniero muSaobis dargSi

TariRi

   1973-dan                   1987-mde

damsaqmebelis dasaxeleba

Tsu i.vekuas sax. gamoyenebiTi maT. instituti

Tanamdeboba

swavluli mdivani

TariRi

   1971-dan                1973-mde

damsaqmebelis dasaxeleba

Tsu i.vekuas sax. gamoyenebiTi maT. instituti

Tanamdeboba

umcrosi mecnier TanamSromeli

 

samecniero xarisxi

fizika-maTematikur mecnierebaTa doqtori, ФМ №004628

akademiuri wodeba

profesori, ufrosi mecnier TanamSromeli, СН №009184

Sromebis raodenoba

108

m. S. monografia

4

m. S. saxelmZRvanelo

2

 

ganaTleba

TariRi

1962-dan                   1968-mde

dawesebuleba (fakulteti)

Tsu meqanika-maTematikis fakulteti

specialoba

meqanika

diplomis /sertifikatis #

C # 435897 warCinebiT

kvalifikacia

meqanikosi

TariRi

1968-dan                   1971-md

dawesebuleba (fakulteti)

Tsu, aspirantura

specialoba

eformadi myari sxeulis meqanika

diplomis /serTifikatis #

ФМ # 022829

kvalifikacia

fizika-maTematikur mecnierebaTa kandidati

TariRi

13.10.1979-dan                 19.07.1980-mde

dawesebuleba (fakulteti)

romis universiteti "la sapienca", guido kastelnuovos saxelobis maTematikis instituti

specialoba

maTematika

diplomis /serTifikatis #

 

kvalifikacia

samecniero staJireba

TariRi

15.10.1979-dan                 14.11.1980-mde

dawesebuleba (fakulteti)

perujis italiuri universiteti ucxoelebisaTvis

specialoba

italiuri

diplomis /serTifikatis #

# 19860

Kvalifikacia

gaviare italiuri enis specialuri kursi

 

miRebuli grantebi     bolo 10 wlis ganmavlobaSi

 

 

grantis dasaxeleba

Georgian-U.S. Bilateral Grants Program III, GEP1-3339-TB-06

TariRi/vadebi

05.01.2007-05.01.2009

grantis dasaxeleba

INTAS South Caucasian Republics 2006 - Research Project  No : 06-100017-8886

TariRi/vadebi

ianvari 2007 – dekemberi 2008

grantis dasaxeleba

saqarTvelos erovnuli samecniero fondis proeqti GNSF/ST06/3-035

TariRi/vadebi

oqtomberi 2006- oqtomberi 2008

grantis dasaxeleba

NATO-s samecniero programis proeqti  PST.CLG.976426/5437

TariRi/vadebi

2000-2002 wlebi

grantis dasaxeleba

NATO (CexeTis mecnierebaTa akademiis maTematikis instituti, praRa, CexeTi)

TariRi/vadebi

03.12.2001-23.05.2002

grantis dasaxeleba

NATO-CNR-is (romis universiteti "la sapienca", italia)

TariRi/vadebi

16.11.1995-14.03.1996

grantis dasaxeleba

DFG (germaniis kvlevis sazogadoeba, potsdamis universiteti, germania)

TariRi/vadebi

aprili-ivnisi, 2004

grantis dasaxeleba

DFG (germaniis kvlevis sazogadoeba, potsdamis universiteti, germania)

TariRi/vadebi

maisi-ivlisi, 1999

grantis dasaxeleba

DAAD (germaniis akademiuri gacvlis samsaxuri, Stutgartis universiteti, germania)

TariRi/vadebi

2.10-3.11.1999

grantis dasaxeleba

DAAD (germaniis akademiuri gacvlis samsaxuri, Stutgartis universiteti, germania)

TariRi/vadebi

1.10-30.11.1994

grantis dasaxeleba

maqs plankis sazogadoebis granti (potsdamis universiteti, germania)

TariRi/vadebi

noemberi-dekemberi, 1996

grantis dasaxeleba

Ateneo (italia)

TariRi/vadebi

15.03-14.04.1996

grantis dasaxeleba

sorosis fondis individualuri granti

TariRi/vadebi

1993

grantis dasaxeleba

saqarTvelos umaRlesi saswavleblebis samecniero granti

TariRi/vadebi

1998-2000

 

enebi: qarTuli, rusuli, inglisuri, germanuli, italiuri

 

kvlevis sfero: kerZowarmoebuliani diferencialuri gantolebebi, uwyvet garemoTa meqanika

 

sadoqtoro programasTan dakavSirebuli zogierTi publikacia:

 

  1. Oscillation of Cusped Euler-Bernoulli Beams and Kirchhoff-Love Plates, Hacettepe Journal of Mathematics and Statistics, Vol. 35 (1), 7-53, 2006 (with: A. Kufner)
  2. A Cusped Prismatic Shell-like Body under the Action of  Concentrated Moments, ZAMP-Zeitschrift fuer Angewandte Mathematik und Physik (DOI 10.1007/s 00033-006-6005-7, Online First, published online: 20 November, 2006,  access: http://www.birkhauser.ch)
  3. A cusped Prismatic Shell-like Body with the Angular Projection under the Action of a Concentrated Force, Rendiconti Academia Nazionale delle Scienze detta dei XL, Memorie di Matematica e Applicazioni, 124 0 (2006), Vol. XXX, fasc. 1
  4. Some Degenerate Elliptic Systems and Applications to Cusped Plates, Mathematische Nachrichten, 280, 4, 388-407, 2007 (with B.-Wolfgang Schulze)
  5. Two-dimensional Hierarchical Models for Prismatic Shells with Thickness Vanishing at the Boundary, Journal of Elasticity, Vol. 77, No. 2, 95-122, 2004 (with: S. Kharibegashvili, D. Natroshvili, W.L. Wendland)

 

CV

 

  gvari, saxeli               robert gilberti

 

dabadebis TariRi da adgili:

01/08/32, New York

misamarTebi:

 

samsaxuris:

Department of Mathematical Sciences, 317 Ewing Hall

University of Delaware, Newark, DE 19716

telefonebi:    

faqsi

el. fosta:

+302 831-2315

+ 302 831-4456

gilbert@math.udel.edu

 

 

samuSao gamocdileba:

 

1975-dRemde delaveris universitetis fondis profesori, maTematikur mecnierebaTa departamenti, delaveris universiteti

1966-1975 profesori, maTematikis departamenti, indianas universiteti

1965-1966 profesori, maTematikis departamenti, jorjTaunis universiteti

1964-1965 asocirebuli profesori, siTxeebis dinamikisa da gamoyenebiTi maTematikis instituti, marilendis universiteti

1961-1964 asistent profesori, siTxeebis dinamikisa da gamoyenebiTi maTematikis instituti, marilendis universiteti

1960-1963 asistent profesori, miCiganis saxelmwifo universiteti

1958-1960 asistent profesori, pitsburgis universiteti

 

ganaTleba:

 

bakalavris diplomi (fizika), bruklinis koleji 1952;

magistrantis diplomi (fizika), melonis universiteti 1955;

magistrantis diplomi (maTematika), melonis universiteti 1955;

Ph.D. (maTematika) melonis universiteti 1958.

 

sadoqtoro programasTan dakavSirebuli zogierTi publikacia:

 

1. Acoustics of stratified poroelastic composite, Zeit. f. Analysis u. i. Andwendungen 18 (1999), 977-1001 (with A. Panchenko)

2. Vibration of two bonded composites: effects of the interface and distinct periodic structures, Int. J. Solids and Structures, 40 (2003), 3177-3193 (with Harik, and Panchenko)

3.  A two-dimentional  nonlinear theory of anisotropic plates, Mathem. And Computer Modeling 32 (2000) 855-875 (with Vashakmadze)

4.  A solution of the equations of elastic shell theory, Math. Methods Applied Sciences, 12 (1990), 341-363 (with Buchanan)

5.  Marine Acoustics: Direct and Inverse Problems, SIAM, Philadelphia (2004), 255 pages (with Buchanan, Wirgin, Xu)

 

 

CV

 

gvari, saxeli, mamis saxeli:

xaribegaSvili sergo sergos Ze

dabadebis TariRi da adgili:

20.01.1953, q. Telavi

ojaxuri mdgomareoba:

myavs meuRle da  ori Svili

 

misamarTebi:

 

 

samsaxuris:

Tbilisis i. javaxiSvilis sax. saxelmwifo universiteti,

Tbilisi 0186, universitetis q. #2

 

saxlis:

 

Tbilisi 0159, diRmis masivi 4 kv. 9 korp. bina 38

 

telefonebi:    

 

el. fosta:

samsaxuris:  33-29-64;  saxlis:  69-35-01;

mobiluri: 855 75-08-92

kharibegashvili@yahoo.com

 

ganaTleba da samecniero xarisxebi:

 

 

1969-1974

moskovis  lomonosovis sax. saxelmwifo universite­tis meqanika-maTematikis fakultetis studenti (spe­ci­a­loba maTematika).

1974-1976

v.a. steklovis sax. maTe­ma­tikis institutis staJior-mkvlevari (moskovi)

1976-1979

amave institutis aspiranti

21. 02. 1980

fizika-maTematikis mecnierebaTa kandidati (igive instituti)

27. 02. 1987

fizika-maTematikis mecnierebaTa doqtori (andria razmaZis sax. maTematikis instituti, Tbilisi)

 

profesiuli gamocdileba:

 

1980-1985

Tsu i. vekuas sax. gamoyenebiTi maTematikis institutis umcrosi mecnier TanamSromeli

1985-1988

amave institutis ufrosi mecnier TanamSromeli

1988-1992

amave institutis wamyvani mecnier TanamSromeli

1992-1993

saqarTvelos åteqnikuri universite­tis #99 umaRlesi maTe­matikis kaTedris profesori

1993-1998

amave universite­tis  # 4åTeoriuli meqanikis  kaTed­ris  gamge

1998-2006

 

2006-dRemde

 

2006-dRemde

a. razmaZis sax. maTe­­matikis institutis wamyvani mecnier TanamSromeli

a. razmaZis sax. maTe­­matikis institutis mTavari mecnier TanamSromeli

Tbilisis i. javaxiSvilis sax. saxelmwifo universitetis zust da sabunebismetyvelo mecnierebaTa fakultetis asocirebuli profesori.

 

enebi: qarTuli, rusuli, inglisuri.

 

kvlevis sfero: kerZowarmoebulebiani diferencialuri gantolebebi da sistemebi.

 

mecnieruli Sromebi: var 60-mde samecniero Sromis avtori.

 

Tebervali, 1997   saqarTvelos mecnierebaTa akademiis n. musxeliSvilis saxelobis premiis laureati.

 

sadoqtoro programasTan dakavSirebuli zogierTi publikacia:

  1. Direct and inverse fluid-structure interaction problems (with D. Natroshvili and Z. Tediashvili). Rend. Mat. Appl. (7) 20(2000), 57-92.
  2. Some mathematical problems related to the first approximation of  I. Vekua's theory for cusped prismatic shells (with G. Devdariani, G. Jaiani, D. Natroshvili). Appl. Math. Inform. 5(2000), No. 2, 26-46.
  3. Dynamical problems in the (0,0) and (1,0) approximations of a mathematical model of cusped bars (with G. Jaiani). Functional-analytic and Complex Methods, Interactions, and Applications to Partial Differential Equations. Proceedings of the International Graz Workshop (Graz, Astrie, 12-16, February), 188-247, World Scientific, 2001.
  4. Two-dimensional hierarchical models for prismatic shells with thickness vanishing at the boundary (with G. Jaiani, D. Natroshvili and W. L. Wendland). Journal of Elasticity 77 (2004), No. 2, 95-122.
  5. On some boundary value problems for a class of hyperbolic systems of second order in a conic domains. I. Inequal. Appl. 2005, No. 5, 547-567.
  6. Existence and uniqueness theorems for cusped prismatic shells in the n-th hierarchical model (with N. Chinchaladze, R.P. Gilbert, G. Jaiani, D. Natroshvili). Mathematical Methods in the Applied Sciences (accepted).