Theorems of Continuous Dependence of Solution on the Initial Data for One Class Neutral Functional Differential Equation with the Two Types Controls

Tea Shavadze

In the work is considered the following quasi-linear neutral functional differential equation

$$\dot{x}(t) = A(t, x(t), x(t-\theta), v(t))\dot{x}(t-\sigma) + f(t, x(t), x(t-\tau), u(t)), \ t \in [t_0, t_1]$$

with the initial condition

$$x(t) = \varphi(t), \ \dot{x}(t) = g(t), \ t < t_0, \ x(t_0) = x_0,$$

where v(t) is a piecewise-continuous control function and u(t) is a measurable control function. The theorems about continuity of solution on the initial data are proved. Under the initial data we mean the collection of delay parameters θ , σ and τ initial functions $\varphi(t)$ and g(t) initial vector x_0 control functions v(t) and u(t). Such type theorems play an important role in studying optimization problems and in proving formulas variation of solution. A similar problem was studied early for a quasi-linear neutral functional differential equation without controls and perturbations of σ , in that case when $A(t, x(t), x(t - \tau), v(t)) \equiv A(t)$.

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Grant No. YS-21-554.