On some applications of λ_2 -massive sets

MARIAM BERIASHVILI

I. Vekua Institute of Applied Mathematics, Iv. Javakhishvili Tbilisi State University, Georgian Technical University Tbilisi, Georgia

email: mariam_beriashvili@yahoo.com

A subset X of R^2 is λ_2 -thick (or λ_2 -massive) in the Euclidean plane R^2 if, for every λ_2 -measurable set $Z \subset R^2$ with $\lambda_2(Z) > 0$, the relation $X \cap Z \neq \emptyset$ holds true, where λ_2 is the standard two-dimensional Lebesgue measure on the Euclidean plane.

Sierpinski showed that there are injective functions acting from R into R whose graphs are λ_2 -thick subsets of the plane R^2 .

Noticed that if a subset X of R^2 is λ_2 -measurable and λ_2 -thick simultaneously, then it is of full λ_2 -measure, i.e., $\lambda_2(R^2 \setminus X) = 0$. If the set X in the plane is not of full λ_2 -measure but is λ_2 -thick, then X is not λ_2 -measurable.

In the present talk we discuss, λ_2 -thick subsets of the plane \mathbb{R}^2 , functions acting from \mathbb{R} into \mathbb{R} whose graphs are λ_2 -thick and set-theoretical aspects of their applications in the study of invariant (quasi-invariant) measure extension problem.

Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Grant YS-21-1667