Boundary Value Problem for Fractional Diffusion-Wave Equation in Noncylindrical Domain

Arsen Pskhu
Institute of Applied Mathematics and Automation,
Nalchik, Russia,
pskhu@list.ru

In the work we discuss the first boundary value problem for the fractional diffusion-wave equation in a noncylindrical domain: find a regular solution of the equation

$$
\left(\frac{\partial^{\alpha}}{\partial y^{\alpha}}-\frac{\partial^{2}}{\partial x^{2}}\right) u(x, y)=f(x, y) \quad(n-1<\alpha \leq n, \quad n \in\{1,2\})
$$

in the domain

$$
D=\left\{(x, y): z_{1}(y)<x<z_{2}(y), 0<y<T\right\}
$$

with boundary conditions

$$
\begin{gathered}
u\left(z_{1}(y), y\right)=\varphi_{1}(y), \quad u\left(z_{2}(y), y\right)=\varphi_{2}(y), \quad 0<y<T \\
\lim _{y \rightarrow 0} \frac{\partial^{\alpha-k}}{\partial y^{\alpha-k}} u(x, y)=\tau_{k}(x), \quad z_{1}(0)<x<z_{2}(0), \quad k=\overline{1, n}
\end{gathered}
$$

where $z_{k}(y), \varphi_{k}(y)$ and $\tau_{k}(x)$ are given continuous functions, $z_{1}(y)$ does not decrease, $z_{2}(y)$ does not increase, and $z_{1}(y)<z_{2}(y)$ for all $y \in[0, T)$.

