About one method of solution to the Cauchy problem for a singular poly-parabolic equation

Shakhobiddin T.Karimov*
* Faculty of Mathematics and Physics, Ferghana State University, Ferghana-150100, Republic of Uzbekistan, shkarimov09@rambler.ru

The importance of the study of high-order equations of the form $L^{m} u=0, m=1,2, \ldots$, pointed out A.V.Bitsadze [1], where L - linear differential operator of the second order, and $L^{m}=L^{m-1} L-\mathrm{m}$-th composition of this operator.

By R^{n} we denote the n-dimensional Euclidean space, $R_{+}^{n}=\left\{x \in R^{n}: x_{k}>0, k=\overline{1, n\}}\right.$. In the given work, we consider an analogue of the Cauchy problem of determination in a domain $\Omega=\left\{(x, t): x \in R_{+}^{n}, t>0\right\}$ of a classical solution of the equation

$$
L_{\gamma}^{m}(u) \equiv\left(\frac{\partial}{\partial t}-\Delta_{B}\right)^{m} u(x, t)=0, \quad(x, t) \in \Omega
$$

satisfying conditions $\partial^{k} u /\left.\partial t^{k}\right|_{t=0}=\varphi_{k}(x), x \in R_{+}^{n}, \partial^{2 k+1} u /\left.\partial x_{j}^{2 k+1}\right|_{x_{j}=0}=0, \quad t>0, j=$ $\overline{1, n}, k=\overline{0, m-1}$, where $\Delta_{B}=\sum_{k=1}^{n} B_{\gamma_{k}}^{x_{k}}, B_{\gamma_{k}}^{x_{k}}=\partial^{2} / \partial x_{k}^{2}+\left[\left(2 \gamma_{k}+1\right) / x_{k}\right] \partial / \partial x_{k}$ is the Bessel operator on the variable $x_{k}, \gamma_{k} \in R, \gamma_{k}>-1 / 2, k=\overline{1, n}, m \in N, \varphi_{k}(x)$ are given smooth functions.

In order to solve the formulated problem, we use multidimensional generalized Erdélyi-Kober operator [2]. For this operator the following is true:

Theorem. Let $\alpha_{k}>0, \eta_{k} \geq-1 / 2, k=\overline{1, n}, m \in N, f(x, y) \in C_{x, y}^{2 m, l m}\left(\Omega^{n} \times \Omega^{s}\right)$, $\lim _{x_{k} \rightarrow 0} x_{k}^{2 \eta_{k}+1}\left[\partial / \partial x_{k}\right]\left[B_{\eta_{k}}^{x_{k}}\right]^{j} f(x, y)=0, j=\overline{0, m-1}, k=\overline{1, n}$. Then

$$
\left[L_{y} \pm \sum_{k=1}^{n}\left(B_{\eta_{k}+\alpha_{k}}^{x_{k}}+\lambda_{k}^{2}\right)\right]^{m} J_{\lambda}^{(x)}\binom{\alpha}{\eta} f(x, y)=J_{\lambda}^{(x)}\binom{\alpha}{\eta}\left[L_{y} \pm \sum_{k=1}^{n} B_{\eta_{k}}^{x_{k}}\right]^{m} f(x, y)
$$

here L_{y} is a linear differential operator of l order on a variable $y \in R^{s}$ and independent on $x \in R^{n}, \Omega^{n}=\prod_{k=1}^{n}\left(0, b_{k}\right)$ be the Cartesian product, $b_{k}>0, k=\overline{1, n}$.

Applying this theorem, the explicit formula of a solution to the Cauchy problem is constructed.

References

1. Bitsadze, A.V. Equations of mixed type. Izd. Akad. Nauk SSSR, Moscow, 1959.
2. Karimov Sh.T. Multidimensional generalized Erdélyi-Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients. // Fract. Calc. Appl. Anal., Vol. 18, No 4 (2015), pp. 845-861.
