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The importance of the study of high-order equations of the form Lmu = 0, m = 1, 2, . . . ,
pointed out A.V.Bitsadze [1], where L - linear differential operator of the second order, and
Lm = Lm−1L - m -th composition of this operator.

By Rn we denote the n - dimensional Euclidean space, Rn+ = {x ∈ Rn : xk > 0, k = 1, n}.
In the given work, we consider an analogue of the Cauchy problem of determination in a domain
Ω = {(x, t) : x ∈ Rn+, t > 0} of a classical solution of the equation
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, Bxk

γk
= ∂2/∂x2k + [(2γk + 1)/xk]∂/∂xk is the Bessel

operator on the variable xk, γk ∈ R, γk > −1/2, k = 1, n, m ∈ N, ϕk(x) are given smooth
functions.

In order to solve the formulated problem, we use multidimensional generalized Erdélyi-Kober
operator [2]. For this operator the following is true:

Theorem. Let αk > 0, ηk ≥ −1/2, k = 1, n, m ∈ N, f(x, y) ∈ C2m,lm
x,y (Ωn × Ωs),
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f(x, y) = 0, j = 0,m− 1, k = 1, n. Then
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here Ly is a linear differential operator of l order on a variable y ∈ Rs and independent on

x ∈ Rn, Ωn =
n∏
k=1

(0, bk) be the Cartesian product, bk > 0, k = 1, n.

Applying this theorem, the explicit formula of a solution to the Cauchy problem is con-
structed.

References

1. Bitsadze, A.V. Equations of mixed type. Izd. Akad. Nauk SSSR, Moscow, 1959.

2. Karimov Sh.T. Multidimensional generalized Erdélyi-Kober operator and its application
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