NONLOCAL PROBLEM WITH DISCONTINOUS BONDING CONDITIONS FOR

LINEAR PARABOLIC EQUATIONS OF MIXED TYPE

Akbarova M.Kh

Tashkent University of Information Technologies Faculty of Software Engineering, department "System and Applied Programming" Tashkent, Uzbekistan marguba6511@umail.uz

*An existence and uniqueness of solution of a nonlocal problem are considered for linear parabolic equation of mixed type, in the right -parabolic portion the integrally condition connects of the breaking line and the right border of a domain. To prove of the uniqueness, we use the principle of extremes. The existence is proved by equivalent reduction to an existence of a solution of a singular integral equations system of normal type with zero index.

Let $\Omega = \Omega^+ \cup \Omega^- \cup S_0$ - limited domain of the plane (x, t), where $\Omega^+ = \{(x, t): 0 < x < 1, 0 < t \le 1\}, \ \Omega^- = \{(x, t): -1 < x < 1, 0 < t \le 1\}, S_0 = \{(x, t): x = 0, 0 < t < 1\}.$

In the domain Ω we consider the linear equation

$$U_{xx} + +c(x,t)U - sgnx \cdot U_t = f(x,t)$$
(I)

where $f(x,t) \in C^{(1,h)}(\Omega)$, $c(x,t) \in C^{(0,h)}(\overline{\Omega})$ \bowtie $c(x,t) \leq 0$ in Ω . Use the following notation:

 $\Gamma_0 = \{(x,t): 0 \le x \le 1, t = 0\}, \Gamma_1 = \{(x,t): -1 \le x \le 0, t = 1\}, S_1^+ = \{(x,t): x = 1, 0 < t < 1\}, S_1^- = \{(x,t): x = -1, 0 < t < 1\}. \text{ Let } x = \gamma_i(t), i = 1, \dots, n - \text{given functions from } C^1[0,1], \text{ wherein they do not alter its signs.} -1 \le \gamma_i(t) \le 0, i = 1, \dots, n$

Problem A. Find a function U(x, t) with the following properties:

1) $U(x,t) \in C(\overline{\Omega}/S_0) \cap C^1(\Omega \cup S_1^+ \cup S_1^-/S_0);$

2) U(x, t) is a regular solution of the equation (I) at Ω/S_0 ;

3) satisfies the conditions

$$U/_{\Gamma_0} = g_1(x), \quad U/_{\Gamma_1} = g_2(x)$$
 (2)

$$\int_{0}^{1} U(x,t) dx = \mu_{1}(t), \frac{U}{S_{1}^{-}} = \mu_{2}(t), \quad 0 < t < 1$$
(3)

$$U(-1,t) + \sum_{i=1}^{n} b_i(t) U(\gamma_i(t),t) = \mu_2(t), \quad 0 \le t \le 1,$$
(4)

4) and conditions of bonding in the following forms

$$U(+0,t) = U(-0,t) + \alpha_1(t),$$

$$U_x(+0,t) = \alpha_2(t)U_x(-0,t) + \alpha_3(t),$$

where $\alpha_1(t) \in C[0,1] \cap C^1(0,1)$, $\alpha_2(t)$, $\alpha_3(t) \in C[0,1]$, $\alpha_2(t) > 0$, $b_i(t), i = 1, ..., n, f(x, t), g_i(x), \mu_i(t)$ i = 1, 2 – given sufficiently smooth functions, wherein

$$\mu_1(0) = \int_0^1 g_1(x) dx, \quad \mu_2(1) = g_2(-1) + \sum_{i=1}^n b_i(1) g_2(\gamma_i(1))$$

Theorem. Let $\sum_{i=1}^{n} |b_i(t)| \le 1$. The problem has no more than one solution.

Acknowledgment. This work was supported by docent of Tashkent State University of Economics- S.S. Isamukhamedov