Publications |
Number of papers: 18
1.
Sequential-Parallel Method of High Degree Precision for Cauchy
Abstract Problem Solution. Tbilisi, Reports of Enlarged Session of The
Seminar of I. Vekua Institute of Applied Mathematics. 1999, Vol. 14,
№ 3, pp. 45-48 (Coauthors Z. Gegechkori, J. Rogava).
2.
Sequential-Parallel Decomposition Method of High Degree
Precision for Nonhomogenous Evolution Equation. - Proceedings of Iv.
Javakhishvili Tbilisi State University, Applied Mathematics and
Informatics, Vol. 330 (20), №1, 2000, pp. 9-14 (Coauthors Z.
Gegechkori, J. Rogava).
3.
High Order of Accuracy Decomposition Method For an Evolution
Problem With Variable Operator. Proceedings of I. Vekua Institute of
Applied Mathematics, 2000-2001, Vol. 50-51, pp. 103-117.
4.
High Order of Accuracy Decomposition of the Evolution Problem
With Variable Operator Using Resolvent Polinoms. Proceedings of I.
Vekua Institute of Applied Mathematics, 2000-2001, Vol. 50-51, pp.
118-128.
5.
Second Degree Precision Approximation of the Evolution Problem
With Variable Operator By Evolution Problems With Locally Constant
Operator. Bulletin Of Young Scientists Club, 2001.
6.
High Degree Precision Decomposition Formulas of Semigroup
Approximation. Reports of Enlarged Session of The Seminar of I. Vekua
Institute of Applied Mathematics, 2001, Vol. 16, №1-3, pp.
89-92, (Coauthors Z. Gegechkori, J. Rogava).
7.
High Degree Precision Decomposition Method for an Evolution
Problem. Minsk, Computational Methods in Applied Mathematics. 2001,
Vol. 1, №2, pp. 173-187 (Coauthors Z. Gegechkori, J. Rogava).
8.
High Degree Precision Decompostion Method for the
Nonhomogenous Evolution Problem With an Operator Under a Split Form.
Bulletin of TICMI. 2001, Vol. 5, pp. 13-18 (Coauthors Z.
Gegechkori, J. Rogava).
9.
Differential Scheme of High Degree Precision Decomposition of
Nonhomogenous Evolution Problem. Tbilisi, AMI, 2001, Vol. 6, №1.
pp. 45-80 (Coauthors Z. Gegechkori, J. Rogava).
10.
High Degree Precision Decomposition Method for the Evolution
Problem With an Operator Under a Split Form. Paris, M2AN, 2002, Vol.
36, №4, pp. 693-704 (Coauthors Z. Gegechkori, J. Rogava).
11.
Figh Degree Precision Decomposition Schemes For Evolution
Problem. Dissertation paper, Tbilisi, 2003, p. 133 (in Georgian).
12.
Implicit Difference Schemes for Charney-Obukhov Equation
Tbilisi, AMIM, 2003, Vol. 8, №2, pp. 20-39. (Coauthors J. Rogav,
T. Kaladze, L. Tsamalashvili).
13.
The Third and Fourth Order Accuracy Decomposition Formulas for
a Semigroup. Symposium on Differential Equations and Mathematical
Physics December 24 - 25, 2003 Dedicated to the 100th Birthday
Anniversary of Academician V. Kupradze and 90th Birthday Anniversary
of Academician N. Vekua, Section I. Differential
Equations, http://www.rmi.acnet.ge/DEMPh/demph2003/section1/d2003-1-3.pdf
(Coauthors J. Rogava, Z. Gegechkori).
14.
The Fourth Order Accuracy Decomposition Scheme for an Evolution
Problem. Paris, M2AN, 2004, Vol. 38, №4, pp. 707-722 (Coauthors
Z. Gegechkori, J. Rogava).
15.
First and Second-order Accurate Implicit Difference Schemes
for the Carney-Obukhov Equation, Physics Letters A, v. 328/1, pp.
51-64, 2004 (Coauthors J. Rogava, T. Kaladze, L. Tsamalashvili).
16.
The Fourth Order of Accuracy Operator Split of Evolution
Problem Using Pade Approximation, Tbilisi, AMIM, 2004, Vol. 9,
№1, pp. 16-36. (Coauthors Z. Gegechkori, J. Rogava).
17.
An Automatically Stable And Order Three Split Rational
Approximation of a Semigroup, IMA Journal on Numerical Analysis, In
Pint.
18.
The Fourth Order Accuracy Decomposition Scheme for a Multi-dimensional
Evolution Problem, SIAM Journal on Numerical Analysis, In Pint.
|