MIKHEIL TSIKLAURI


Official address University str.,2, Tbilisi 380043,Georgia
Tel: (995-32) 307-784, (995-32) 304-019
E-mail: MTsikla@viam.hepi.edu.ge
Marital status Married, one child
Nationality Georgian
Date of birth Born in June 16, 1977, Tbilisi, Georgia

Education 1994-1998 Tbilisi State University, Department of Applied Mathematics and Computer Sciences, Bachelor.
1998-2000  Tbilisi State University, Department of Applied Mathematics and Computer Sciences, Master.
Academic Degree 1998  Bachelor of Applied Mathematics.
2000  Master of Applied Mathematics.
Scientific Degree 2003 Candidate of Physical Mathematical Sciences
Professional Experience 2000 – up to now  I. Vekua Institute of Applied Mathematics of Tbilisi State University, Junior Scientist..
2000 – up to now  Tbilisi State University, Department of Applied Mathematics and Computer Sciences, Teacher
Scientific Interests Computational Mathematics, Numerical Analysis, Difference schemes,  Decomposition methods.
Languages Georgian, Russian, English.
Publications Number of papers: 18

1.      Sequential-Parallel Method of High Degree Precision for Cauchy Abstract Problem Solution. Tbilisi, Reports of Enlarged Session of The Seminar of I. Vekua Institute of Applied Mathematics. 1999, Vol. 14, № 3, pp. 45-48 (Coauthors Z. Gegechkori, J. Rogava).

2.      Sequential-Parallel Decomposition Method of High Degree Precision for Nonhomogenous Evolution Equation. - Proceedings of Iv. Javakhishvili Tbilisi State University, Applied Mathematics and Informatics, Vol. 330 (20), №1, 2000, pp. 9-14 (Coauthors Z. Gegechkori, J. Rogava).

3.      High Order of Accuracy Decomposition Method For an Evolution Problem With Variable Operator. Proceedings of I. Vekua Institute of Applied Mathematics, 2000-2001, Vol. 50-51, pp. 103-117.

4.      High Order of Accuracy Decomposition of the Evolution Problem With Variable Operator Using Resolvent Polinoms. Proceedings of I. Vekua Institute of Applied Mathematics, 2000-2001, Vol. 50-51, pp. 118-128.

5.      Second Degree Precision Approximation of the Evolution Problem With Variable Operator By Evolution Problems With Locally Constant Operator. Bulletin Of Young Scientists Club, 2001.

6.      High Degree Precision Decomposition Formulas of Semigroup Approximation. Reports of Enlarged Session of The Seminar of I. Vekua Institute of Applied Mathematics, 2001, Vol. 16, №1-3, pp. 89-92, (Coauthors Z. Gegechkori, J. Rogava).

7.      High Degree Precision Decomposition Method for an Evolution Problem. Minsk, Computational Methods in Applied Mathematics. 2001, Vol. 1, №2, pp. 173-187 (Coauthors Z. Gegechkori, J. Rogava).

8.      High  Degree Precision Decompostion Method for the Nonhomogenous Evolution Problem With an Operator Under a Split Form. Bulletin of TICMI. 2001, Vol. 5,  pp. 13-18 (Coauthors Z. Gegechkori, J. Rogava).

9.      Differential Scheme of High Degree Precision Decomposition of Nonhomogenous Evolution Problem. Tbilisi, AMI, 2001, Vol. 6, №1. pp. 45-80 (Coauthors Z. Gegechkori, J. Rogava).

10.  High Degree Precision Decomposition Method for the Evolution Problem With an Operator Under a Split Form. Paris, M2AN, 2002, Vol. 36, №4, pp. 693-704 (Coauthors Z. Gegechkori, J. Rogava).

11.  Figh Degree Precision Decomposition Schemes For Evolution Problem. Dissertation paper, Tbilisi, 2003, p. 133 (in Georgian).

12.  Implicit Difference Schemes for Charney-Obukhov Equation Tbilisi, AMIM, 2003, Vol. 8, №2, pp. 20-39. (Coauthors J. Rogav, T. Kaladze, L. Tsamalashvili).

13.  The Third and Fourth Order Accuracy Decomposition Formulas for a Semigroup. Symposium on Differential Equations and Mathematical Physics December 24 - 25, 2003 Dedicated to the 100th Birthday Anniversary of Academician V. Kupradze and 90th Birthday Anniversary of Academician N. Vekua, Section I.   Differential Equations, http://www.rmi.acnet.ge/DEMPh/demph2003/section1/d2003-1-3.pdf  (Coauthors J. Rogava, Z. Gegechkori).

14.  The Fourth Order Accuracy Decomposition Scheme for an Evolution Problem. Paris, M2AN, 2004, Vol. 38, №4, pp. 707-722 (Coauthors Z. Gegechkori, J. Rogava).

15.  First and Second-order Accurate Implicit Difference Schemes for the Carney-Obukhov Equation, Physics Letters A, v. 328/1, pp. 51-64, 2004 (Coauthors J. Rogava, T. Kaladze, L. Tsamalashvili).

16.  The Fourth Order of Accuracy Operator Split of Evolution Problem Using Pade Approximation, Tbilisi, AMIM, 2004, Vol. 9, №1, pp. 16-36. (Coauthors Z. Gegechkori, J. Rogava).

17.  An Automatically Stable And Order Three Split Rational Approximation of a Semigroup, IMA Journal on Numerical Analysis, In Pint. 

18. The Fourth Order Accuracy Decomposition Scheme for a Multi-dimensional Evolution Problem, SIAM Journal on Numerical Analysis, In Pint.

Basic Courses Numerical methods (Laboratory studies and seminars).                                                          Information Technologies (Lectures)
 

Main Page