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Abstract

In this paper deals with the basic boundary value problems of
the plane theory of elasticity for a circular ring with double voids.
general solution of the governing system of equations of the plane
strain is represented by means of two analytic functions of the complex
variable and two solutions of Helmholtz equations. Using the obtained
solutions, the problems of the plane theory of elasticity for a circular
ring are solved analytically.
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1 Introduction

Nunziato and Cowin [1, 2] have established a theory for the behavior of
single porous deformable materials in which the skeletal or matrix materials
are elastic and the interstices are voids (vacuous pores). Recently, Ieşan
and Quintanilla [3] have developed the theory of Nunziato and Cowin [2]
for thermoelastic deformable materials with double porosity structure by
using the mechanics of materials with voids. In addition, in these models
the dependent variables are the displacement vector, the volume fractions of
pores and fissures and the variation of temperature. Such materials include,
in particular, rocks and soils, granulated and some other manufactured
porous materials. The basic BVPs of this theory are studied in [4–7].
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Furthermore, plane waves, uniqueness theorems and existence of eigen-
frequencies in the theory of rigid bodies with double voids are investigated
by Svanadze [5]. The existence of classical solutions in the external BVPs
of steady vibrations of this theory is established by the same author in [8].

The problems of porous elasticity for materials with voids were consid-
ered in [9-19].

The present paper deals with plane strain problem for material with
double voids. The boundary value problem is solved for a circular ring.

2 Basic equations for materials with double voids

Let x = (x1;x2;x3) be a point of the Euclidean three dimensional space
R3. We assume that the subscripts preceded by a comma denote partial
differentiation with respect to the corresponding Cartesian coordinate.

The governing equations of the theory of isotropic and homogeneous
elastic materials with double voids can be expressed in the following form
[3]:

• Equations of equilibrium

tji,j + ρ0fi = 0, i, j = 1, 2, 3,
σj,j + ξ + ρ0g = 0,
τj,j + ζ + ρ0l = 0,

(1)

where tij is the symmetric stress tensor, fi is the body force per unit mass,
ρ0 is the mass density, σi and τi are the equilibrated stress vectors, ξ and
ζ are the intrinsic equilibrated body forces, g is the extrinsic equilibrated
body force per unit mass associated to macro pores, l is the extrinsic equi-
librated body force per unit mass associated to fissures.

• Constitutive equations

tij = λekkδij + 2µeij + bδijφ+ dδijψ,
σi = αφ,i,+b1ψ,i,
τi = b1φ,i,+γψ,i,
ξ = −bekk − α1φ− α3ψ,
ζ = −dekk − α3φ− α2ψ,

(2)

where λ and µ are the Lamé constants, α, b, d, b1, α1, α2 and α3 are the
constants characterizing the body porosity, δij is the Kronecker delta, φ is
a changes of volume fraction corresponding to pores, ψ is a a changes of
volume fraction corresponding to fissures, eij is the strain tensor and

eij =
1
2 (ui,j + uj,i) , (3)

where ui, i = 1, 2, 3 are the components of the displacement vector.
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The constitutive equations also meet some other conditions, following
from physical considerations

µ > 0, 3λ+ 2µ > 0, α2 > 0, α1α2 − α2
3 > 0, α > 0,

(3λ+ 2µ)(α1α2 − α2
3) > 3(α1d

2 + α2b
2 − 2α3bd), αγ > b21.

(4)

Substituting (2) and (3) into (1) we obtain equations with respect to
the components of the displacement and the functions φ and ψ

µ∆̃ui + (λ+ µ)∂iΘ+ b∂iφ+ d∂iψ = 0, j = 1, 2, 3

(α∆̃− α1)φ+ (b1∆̃− α3)ψ − bΘ = 0,

(b1∆̃− α3)φ+ (γ∆̃− α2)ψ − dΘ = 0,

(5)

where ∂i ≡ ∂
∂xi

, Θ = ∂kuk, ∆ ≡ ∂11 + ∂22 + ∂33 is the three-dimensional
Laplace operator, fi = g = l = 0.

3 Basic (governing) equations of the plane defor-
mation

In the case of plane deformation u3 = 0 while the functions u1, u2, φ and
ψ do not depend on the coordinate x3 [20].

As it follows from formulas (2) and (3), in the case of plane strain

tk3 = t3k = 0, σ3 = 0, τ3 = 0, k = 1, 2.

In this case from system (5) we obtain the following system of governing
equations of statics with respect to the functions u1, u2 and φ, ψ

µ∆uk + (λ+ µ)∂kθ + b∂kφ+ d∂kψ = 0, k = 1, 2
(α∆− α1)φ+ (b1∆− α3)ψ − bθ = 0,
(b1∆− α3)φ+ (γ∆− α2)ψ − dθ = 0,

(6)

Note that ∆ ≡ ∂11 + ∂22 is the two-dimensional Laplace operator.
On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 =

reiϑ, (i2 = −1) and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2),
z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.

We can rewrite system (6) in the complex form

2µ∂z̄∂zu+ + (λ+ µ)∂z̄θ + b∂z̄φ+ d∂z̄ψ = 0,
(α∆− α1)φ+ (b1∆− α3)ψ − bθ = 0,
(b1∆− α3)φ+ (γ∆− α2)ψ − dθ = 0.

(7)

The general solution of the system (7) is represented as follows:

2µu+ = κf(z)− zf ′(z)− g(z)− p1∂z̄χ1(z, z̄)− p2∂z̄χ2(z, z̄),

11
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φ = l11χ1(z, z̄) + l12χ2(z, z̄)− E1(f
′(z) + f ′(z)), (8)

ψ = l21χ1(z, z̄) + l22χ2(z, z̄)− E2(f
′(z) + f ′(z)).

where f(z) and g(z) is an arbitrary analytic function of z, χ1(z, z̄) and
χ2(z, z̄) are a general solutions of the Helmholtz equations

∆χ(z, z̄)− κ1χ(z, z̄) = 0,

∆χ(z, z̄)− κ2χ(z, z̄) = 0.

where κα are eigenvalues and (l11, l21), (l12, l22) are eigenvectors of the
matrix C

C =

(
α b1
b1 γ

)−1

·

(
α1 − b2

λ+2µ α3 − bd
λ+2µ

α3 − bd
λ+2µ α2 − d2

λ+2µ

)
,

and

κ =
λ+ 3µ+ 2µ(bS1 + dS2)

λ+ µ− 2µ(bS1 + dS2)
,

p1 =
4µ(bl11 + dl21)

κ1(λ+ 2µ)
,

p2 =
4µ(bl12 + dl22)

κ2(λ+ 2µ)
,

E1 = R · S1, E2 = R · S2,

R =
2(λ+ 2µ)

λ+ µ− 2µ(b1S1 + b2S2)
,

S1 =
bα2 − dα3

2((α1α2 − α2
3)(λ+ 2µ)− α1d2 − α2b2 + 2α3bd)

,

S2 =
dα1 − bα3

2((α1α2 − α2
3)(λ+ 2µ)− α1d2 − α2b2 + 2α3bd)

.

4 The boundary value problem for a circular ring

In this section, we consider a boundary value problem for a concentric
circular ring with radius R1 and R2 (Fig. 1). The origin of coordinates is
at the center of the circle.

12
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Figure 1: The circular ring.

We consider the following problem:

u+ =

{
A′, r = R1,
A′′, r = R2,

(9)

φ =

{
B′, r = R1,
B′′, r = R2,

(10)

ψ =

{
C ′, r = R1,
C ′′, r = R2,

(11)

where A′, A′′, B′ B′′, C ′ and C ′′ are sufficiently smooth functions.
The analytic functions f(z), g(z) and the metaharmonic functions χ1(z, z),

χ2(z, z) are represented as the following series [21]

f(z) = T1z ln z + T2 ln z +

∞∑
−∞

anz
n,

g(z) = T3 ln z +

∞∑
−∞

bnz
n,

(12)

χ1(z, z) =
+∞∑
−∞

(
α′
nIn(

√
κ1r) + α′′

nKn(
√
κ1r)

)
einα,

χ2(z, z) =
+∞∑
−∞

(
β′nIn(

√
κ2r) + β′′nKn(

√
κ2r)

)
einα,

(13)

where In(·) and Kn(·) are the modified Bessel functions of the first and
second kind of n-th order.

13
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Expand the function A′, A′′, B′, B′′, C ′ and C ′′, given on r = R1 and
z = R2, in a complex Fourier series

A′ =
+∞∑
−∞

A′
ne

inα, A′′ =
+∞∑
−∞

A′′
ne

inα,

B′ =
∑+∞

−∞B′
ne

inα, B′′ =
+∞∑
−∞

B′′
ne

inα,

C ′ =

+∞∑
−∞

C ′
ne

inα, C ′′ =

+∞∑
−∞

C ′′
ne

inα.

(14)

Substituting (12), (13) in (8), taking into account the boundary condi-
tions (9-11), (14) and assuming that the series converge on the circumfer-
ence r = R1 and r = R2, one finds

κ

(
T1R1(lnR1 + iα)eiα + T2(lnR1 + iα) +

∞∑
−∞

Rn
1ane

inα

)

−(lnR1 − iα+ 1)R1T1e
iα − T2e

2iα −
∞∑
−∞

nRn
1 āne

−i(n−2)α

−
p1
√
κ1

2

∞∑
−∞

(
In+1(

√
κ1R1)α

′
n −Kn+1(

√
κ1R1)α

′′
n

)
ei(n+1)α

−
p2
√
κ2

2

∞∑
−∞

(
In+1(

√
κ2R1)β

′
n −Kn+1(

√
κ2R1)β

′′
n

)
ei(n+1)α

−T3(lnR1 − iα)−
∞∑
−∞

Rn
1 b̄ne

−inα =

∞∑
−∞

A′
ne

inα,

(15)

κ

(
T1R2(lnR2 + iα)eiα + T2(lnR2 + iα) +

∞∑
−∞

Rn
2ane

inα

)

−(lnR2 − iα+ 1)R2T1e
iα − T2e

2iα −
∞∑
−∞

nRn
2 āne

−i(n−2)α

−
p1
√
κ1

2

∞∑
−∞

(
In+1(

√
κ1R2)α

′
n −Kn+1(

√
κ1R2)α

′′
n

)
ei(n+1)α

−
p2
√
κ2

2

∞∑
−∞

(
In+1(

√
κ2R2)β

′
n −Kn+1(

√
κ2R2)β

′′
n

)
ei(n+1)α

−T3(lnR2 − iα)−
∞∑
−∞

Rn
2 b̄ne

−inα =
∞∑
−∞

A′′
ne

inα,

(16)

14
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l11

+∞∑
−∞

(
α′
nIn(

√
κ1R1) + α′′

nKn(
√
κ1R1)

)
einα +

T2
R1

(
eiα + e−iα

)
+l12

+∞∑
−∞

(
β′nIn(

√
κ2R1) + β′′nKn(

√
κ2R1)

)
einα + 2T1 (lnR1 + 1)

−E1

∞∑
−∞

nRn−1
1

(
ane

i(n−1)α + āne
−i(n−1)α

)
=

∞∑
−∞

B′
ne

inα,

(17)

l11

+∞∑
−∞

(
α′
nIn(

√
κ1R2) + α′′

nKn(
√
κ1R2)

)
einα +

T2
R2

(
eiα + e−iα

)
+l12

+∞∑
−∞

(
β′nIn(

√
κ2R2) + β′′nKn(

√
κ2R2)

)
einα + 2T1 (lnR2 + 1)

−E1

∞∑
−∞

nRn−1
2

(
ane

i(n−1)α + āne
−i(n−1)α

)
=

∞∑
−∞

B′′
ne

inα,

(18)

l21

+∞∑
−∞

(
α′
nIn(

√
κ1R1) + α′′

nKn(
√
κ1R1)

)
einα +

T2
R1

(
eiα + e−iα

)
+l22

+∞∑
−∞

(
β′nIn(

√
κ2R1) + β′′nKn(

√
κ2R1)

)
einα + 2T1 (lnR1 + 1)

−E2

∞∑
−∞

nRn−1
1

(
ane

i(n−1)α + āne
−i(n−1)α

)
=

∞∑
−∞

C ′
ne

inα,

(19)

l21

+∞∑
−∞

(
α′
nIn(

√
κ1R2) + α′′

nKn(
√
κ1R2)

)
einα +

T2
R2

(
eiα + e−iα

)
+l22

+∞∑
−∞

(
β′nIn(

√
κ2R2) + β′′nKn(

√
κ2R2)

)
einα + 2T1 (lnR2 + 1)

−E2

∞∑
−∞

nRn−1
2

(
ane

i(n−1)α + āne
−i(n−1)α

)
=

∞∑
−∞

C ′′
ne

inα.

(20)

We use the condition of single-valuedness of the displacements which in
the present case are expressed as

T1 = 0, T2 = 0, T3 = 0.

Comparing in (15)–(20) the coefficients of einα we have

κRn
1an + (n− 2)R−n+2

1 ā−n+2 −R−n
1 b̄−n −

p1
√
κ1

2
In(

√
κ1R1)α

′
n−1

+
p1
√
κ1

2
Kn(

√
κ1R1)α

′′
n−1 −

p2
√
κ2

2
In(

√
κ2R1)β

′
n−1

+
p2
√
κ2

2
Kn(

√
κ2R1)β

′′
n−1 = A′

n,

(21)

15
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κRn
2an + (n− 2)R−n+2

2 ā−n+2 −R−n
2 b̄−n −

p1
√
κ1

2
In(

√
κ1R2)α

′
n−1

+
p1
√
κ1

2
Kn(

√
κ1R2)α

′′
n−1 −

p2
√
κ2

2
In(

√
κ2R2)β

′
n−1

+
p2
√
κ2

2
Kn(

√
κ2R2)β

′′
n−1 = A′′

n,

(22)

l11In(
√
κ1R1)α

′
n + l11Kn(

√
κ1R1)α

′′
n + l12In(

√
κ2R1)β

′
n+

l12Kn(
√
κ2R1)β

′′
n − (n+ 1)Rn

1E1an+1 + (n− 1)R−n
1 E1ā1−n = B′

n,
(23)

l11In(
√
κ1R2)α

′
n + l11Kn(

√
κ1R2)α

′′
n + l12In(

√
κ2R2)β

′
n+

l12Kn(
√
κ2R2)β

′′
n − (n+ 1)Rn

2E1an+1 + (n− 1)R−n
2 E1ā1−n = B′′

n,
(24)

l21In(
√
κ1R1)α

′
n + l21Kn(

√
κ1R1)α

′′
n + l22In(

√
κ2R1)β

′
n+

l22Kn(
√
κ2R1)β

′′
n − (n+ 1)Rn

1E1an+1 + (n− 1)R−n
1 E1ā1−n = C ′

n,
(25)

l21In(
√
κ1R2)α

′
n + l21Kn(

√
κ1R2)α

′′
n + l22In(

√
κ2R2)β

′
n+

l22Kn(
√
κ2R2)β

′′
n − (n+ 1)Rn

2E1an+1 + (n− 1)R−n
2 E1ā1−n = C ′′

n,
(26)

All coefficients in series (12)-(13) are found by solving (21)-(26). It is easy
to prove the absolute and uniform convergence of the series obtained in the
the circle (including the contours) when the functions set on the boundaries
have sufficient smoothness.
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