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ON AN EXPLICIT CONSTRUCTION OF BICENTRIC
QUADRILATERALS

Ana Diakvnishvili

Abstract. We present an effective method of constructing bicentric quadrilat-
erals. More precisely, we give an explicit construction of bicentric quadrilateral
with prescribed two sides. In the symmetrical case, the distance between the two
centers of the arising bicentric quadrilateral is computed, which in virtue of Fuss
relation also gives an explicit formula for the radius of the corresponding incir-
cle. An analogous construction and some of its properties are given for bicentric
polygons with an arbitrary number of sides. In conclusion we present an inter-
pretation of the main results in terms of the Kendall shape space and numerical
results in a concrete case.
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1. Introduction

We begin with a few definitions and notations. In this paper, we only deal with
the so-called planar polygons lying in a given Euclidean plane which is endowed
with a fixed Cartesian coordinate system. Hence we can speak of distances, areas
and other metric characteristics of polygons in question.

Definition 1. A (planar) polygon which has a circumscribed circle, i.e. all
of its vertices belong to a certain circle, is called a cyclic polygon.

Definition 2. A (planar) polygon which has an inscribed circle, i.e. a circle
that is tangent to each side of the polygon, is called a tangential polygon.

Definition 3. A (planar) polygon which simultaneously has a circumscribed
circle and an inscribed circle, is called a bicentric polygon.

In other words, a polygon P is bicentric if it is simultaneously cyclic and tan-
gential. For a bicentric polygon we always denote by R = R(P ) (circumradius)
and r = r(P ) (inradius) the radii of circumscribed and inscribed circles respec-
tively. The distance between the centers of these two circles will be called the
eccentricity d(P ) of P . If a bicentric polygon P is fixed and no misunderstanding
can arise, we write simply (R, r, d) and call it the Euler triple of P . Obviously,
each triangle is bicentric and each regular polygon is bicentric with eccentricity
equal to zero.

As it is known from the classical geometry, a polygon with more than three
sides in general is not bicentric. This only happens under special conditions on
the shape of polygon. For a bicentric polygon, there are important relations
between the inradius, circumradius and eccentricity, which may be considered as
necessary conditions of bicentricity.
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The first such relation was given by L.Euler. Namely, for a triangle T one
has

R2 − d2 = 2Rr,

where (R, r, d) is the Euler triple of T introduced above.
The first one who was concerned with general bicentric polygons was the

German mathematician Nicolaus Fuss. He found analogous relations (necessary
conditions) for bicentric quadrilaterals, pentagons, hexagons, heptagons and oc-
tagons. For this reason, those relations are known as Fuss’s relations, also in the
cases where n > 8.

A very remarkable theorem concerning bicentric polygons was given by the
French mathematician Victor Poncelet. This theorem can be stated as follows.
If there is one bicentric n-gon whose circumcircle is C1 and incircle is C2, then
there are infinitely many bicentric n-gons whose circumcircle is C1 and incircle
is C2. This famous theorem dates to the nineteenth century. Since then many
mathematicians worked on the problems connected with this theorem and solved
many of them.

In this paper, we present an effective method of constructing bicentric poly-
gons and establish certain properties of this construction.

2. Two lemmas and Fuss relation

We now formulate two auxiliary lemmas and recall Fuss relation for quadri-
laterals used in the sequel.

Lemma 1. Let us suppose that we have any two circumferences C2 and
C1, where R and r are, respectively, their radii, C1 is completely inside C2, the
distance between the two centers is denoted d. Then, if we draw any tangent line
to circle C1, divided by the point of tangency into two segments t1 and t2, and
t1 will be given, we can calculate t2 as a function of t1 and the relation has the
following form

(t2)1,2 =
(R2 − d2)t1 ±

√
D

(t21 + r2)
,

where

D = t21(R
2 − d2)2 + (r2 + t21)[4R2d2 − r2t21 − (R2 + d2 − r2)2].

Lemma 2. Suppose we have a triangle ABC inscribed in a circumference of
radius R. Given the two sides u, v of this triangle one can compute its third side
w as follows:

w =
1
2

√
4R2u2 + 4R2v2 − 2u2v2 ± 2

√
D

R
,

where
D = 16R4u2v2 − 4R2u4v2 − 4R2u2v4 + u4v4.

Finally, recall that the classical Fuss relation for quadrilaterals has the form

(R2 − d2)2 − 2r2(R2 + d2) = 0, (1)
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where (R, r, d) is the Euler triple introduced above. Now we are ready to present
our main results.

3. The main results

Our first main result refers to bicentric quadrilaterals.
Theorem 1. For a triple of points (A,B, C) in a circumference S with

|AB| = a > 0, |BC| = b > 0, there exists the fourth point D in S such that the
quadrilateral < A,B,C,D > is bicentric.

Proof. To prove this let us consider the bisector L of the angle formed by
AB and BC sides and a point T on this bisector. We wish to choose T in such
a way that it becomes the center of the inscribed circle X of the sought bicentric
quadrilateral so that the sides AB and BC are tangent to X. To this end we
move the point T along L from the position T = B and consider the uniquely
defined circle X(T ) with the center at T which is tangent to the given sides.
Then let us draw the two tangent lines to X(T ) from the points A and C and
denote by A′ and C ′ the second points of intersection of those tangent lines with
the circle S. It is now easy to see and verify by computer experiments that, as
we move the point T along L, the points A′ and C ′ monotonically move towards
each other along the circle S. So for a certain position of T the points A′ and C ′

will coincide and this point is exactly the fourth vertex of the sought bicentric
quadrilateral. It is easy to make this argument completely rigorous so that the
proof is complete.

For brevity and convenience, the bicentric quadrilateral < A,B,C,D > given
by this theorem will be called the bicentric closure Q(A,B, C) of the points
A,B, C. To compute the position of point D and the Euler triple of the arising
bicentric quadrilateral in general is not an easy problem but we have an explicit
formula for its eccentricity in a special case where < A,B,C,D > is a kite.

Theorem 2. For a triple of points (A,B, C) in a circumference S with
|AB| = |BC| = a > 0, the eccentricity of the unique bicentric closure Q(A,B, C)
is given by the formula

|OOt| = d =
R

(√
4 R2 − a2 + a

)
√

4 R2 − a2 − a
(2)

Proof. We consider a circumference S of radius R with the center at O(0, 0)
and the points on this circle with coordinates: A(x1, y1), B(x2, y2) = (0, R),
C(x3, y3), D(x4, y4) = (0,−R). Next we introduce the notation |AB| = |BC| = a,
|AD| = |CD| = k, where

k =
√

4R2 − a2,

|AB| =
√

(x2 − x1)2 + (y2 − y1)2,

|AD| =
√

(x4 − x1)2 + (y4 − y1)2.

Our goal is to compute the distance between the incenter and circumcenter of
< A,B,C,D > through the coordinates of points A,B, C, D and the radius R of
the circle S. As above we denote the distance between the two centers by d and
denote the center of the incircle by Ot with coordinates (0, yt).
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To calculate the coordinate yt we use the formula for calculating the distance
between a point and a line from analytical geometry which gives

dist(Ot, > AB <) =
−x1 (y1 − yt)− x1 (R− y1)

a
, (3)

dist(Ot, > AD <) =
x1 (yt + R)

k
, (4)

Taking into account that expressions (3) and (4) should be equal and solving the
arising equation with respect to yt, we get:

yt =
R (k + a)

k − a
. (5)

Finally, we get

|OOt| = d =
R

(√
4 R2 − a2 + a

)
√

4 R2 − a2 − a

as it was stated. The proof is complete.
Using the Fuss relation we can also compute the inradius of < A,B,C,D >.
Theorem 3. For a triple of points (A,B, C) in a circumference S with

|AB| = |BC| = a > 0, the inradius of the unique bicentric closure Q(A,B, C) is
given by the formula

r =
1
2

(√
(4R2 − 2a

√
4R2 − a2)(4R2 − a2)a

)
/

(
2R2 − a

√
4R2 − a2

)

Proof. We use Fuss relation (1) and equation (2). Namely, we insert (2) into
(1) and calculate r, which gives the above formula for the inradius.

4. Computing the bicentric closure in the general case

As it was mentioned, in the general case, where a is not equal to b, it is not
easy to compute the coordinates of D and the Euler triple of < A,B,C,D >. To
obtain a virtual solution of this problem we use another method of constructing
a bicentric closure using analytical geometry.

Given points A,B, C on a circle S of radius is R and center at O(0, 0), we
denote the coordinates of given points by A(x1, y1), B(x2, y2), C(x3, y3) and the
coordinates of the sought point by D(x, y). The following observation follows
from the definition of hyperbola and our assumptions.

Lemma 3. If we rotate the coordinate system by an angle α so that the center
O moves to point O1 and points A and C will be located on the rotated x axis
and construct a hyperbola so that the points A and C will be its foci, then at the
intersection of the hyperbola and the circle C1 will be the fourth point D. Hence
to calculate the coordinates of D, it is enough to solve the system, consisting of
the hyperbola equation and circle equations. After doing some calculations, we
get the following system of equations:

Equation 1.
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u2

a2
− v2

−a2 + c2
= 2

(−2xR2 + 2xRx3 + 2yp + (R + x3)q)2

k + m + n + w

+3

(
2 yR2 − 2 yRx3 − y3q + 2 xp

)2

k + 4 m + 4 n + 4 w
= 1

Equation 2.
x2 + y2 = R2

where
p =

√
−R4 + 2 R3x3 −R2x3

2 + R2 − 2 Rx3 + x3
2 + y3

2,

q =
√

R2 − 2 Rx3 + x3
2 + y3

2,

w =
√

k2 − 2 km + 2 kn + m2 + 2 mn + n2,

m = (2y2

√
−x1

4 + 2x1
3x3 − x1

2x3
2 + (x1 − x3)2 + y3

2

−2x2x1
2 + 2x2x1x3 +

√
x1 − x2

3 + y3
2(x1 + x3))2,

n = (2x2

√
−x1

4 + 2x1
3x3 − x1

2x3
2 + (x1 − x3)2 + y3

2

+2y2x1
2 − 2y2x1x3 − y3

√
(x1 − x3)2 + y3

2)2,

k = (2y3

√
−x1

4 + 2x1
3x3 − x1

2x3
2 + (x1 − x3)2 + y3

2

−2x3x1
2 + 2x3

2x1 +
√

x1 − x2
3 + y3

2(x1 + x3))2

and u and v are the rotated coordinates.
Solving the mentioned system we find the exact shape and Euler triple of the

sought bicentric quadrilateral. In concrete cases this system can be solved using
computer algebra.

Returning to the construction described in Theorem 1 we notice that the same
method can be used to construct a bicentric n-gon for arbitrary n > 4. Start-
ing with n = 5 one can also extend this approach to construct self-intersecting
bicentric n-gons, the so-called bicentric n-stars (cf., e.g., [2]). In the last section
of this paper, we present an explicit conjecture in the case of convex bicentric
pentagons.

In the next section we discuss possible interpretation of our results in terms
of the so-called Kendall shape space [5].

5. Bicentric shapes in Kendall shape space of quadrilaterals

The shape spaces introduced by D.Kendall [5] play important role in several
applications of geometry (see, e.g., [5], [6]) so it seems interesting to interpret
the above results in terms of Kendall shape space of quadrilaterals S(4, 2). It is
well known that S(4, 2) is a four-dimensional compact smooth manifold without
boundary which is diffeomorphic to the complex projective space CP 2 [5]. Re-
cently, C.Klingenberg constructed natural coordinate systems in Kendall shape
spaces [6].

In these terms, our Theorem 1 means that the pair of lengths of first two sides
of bicentric quadrilateral give a natural coordinate system in the two-dimensional
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subset B4 of S(4, 2) consisting of the shapes of bicentric quadrilaterals. In fact,
comparison of our construction with the construction used by C.Klingenberg
shows that our coordinate system is a restriction of the coordinate system con-
structed in [6]. So we are able to use the topological results of [6], which yields
the following conclusion.

Corollary. The set of bicentric quadrilateral shapes B4 is a two-dimensional
surface in S(4, 2) diffeomorphic to the two-dimensional sphere S2.

The described connection with the paper of C.Klingenberg suggested several
further applications of our construction in the context of Kendall of shape spaces,
which will be discussed in a forthcoming paper of the author.

6. Generalization to bicentric pentagons

In the sequel we briefly outline application of our approach to construction
of bicentric pentagon. First of all, analyzing the proof of Theorem 1 one comes
to the following conjecture which seems highly plausible.

Conjecture. For any three points A,B, C in a circumference S, there exist
the fourth and fifth points D and E in S such that the pentagon < A,B,C,D,E >
is bicentric. Actually, there is good evidence that an analogous result should be
true for bicentric n-gons but we do not discuss these aspects for the reason of
space. Instead we present further details in the symmetric case, where |AB| =
|BC| = a. In this case, using Theorem 1 and the method of proof of Theorem 2,
we get the two equations with two variables yt and v. So we can find yt and v,
where yt is the coordinate of Ot and v is the distance from the center of S to the
given fifth side.

In conclusion we present an example illustrating our main results. As was
shown, in the symmetric case we have

r = a
(√

4R2 − a2
)

/
(√

4R2 − a2 + a
)

, (6)

and using Fuss relations (1) and (6) we calculate d which has the following form

d = [
√

2((2R2 + ak)(2kR2a + 4R4 + 4R2a2 − a4

−
√

a2k2(16R4 + 4R2a2 + 8R2ak − a4)))1/2]/[4R2 + 2ak]
(7)

where
k =

√
R2 − a2.

We now verify the above results for the concrete values R = 5, A = (3, 4),
B = (0, 5). Here |AB| = a = 3.16 and equation (6) gives that r = 2.37 and
d = 2.5, which can be independently confirmed using Geogebra.
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