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Abstract. The object of the present paper is to construct explicit solutions of
BVPs for an isotropic elastic infinite strip with voids. General representations of
a regular solution of a system of equations for a homogeneous isotropic medium
with voids are constructed by means of the elementary (harmonic, bi-harmonic
and meta-harmonic) functions. Using the Fourier method, the basic BVPs are
solved effectively (in quadratures) for the infinite strip.
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1. Introduction

Elastic materials with porosity are very important and have applications in
many fields of engineering, such as the petroleum industry, material science and
biology.

The theory of porous materials with voids is used for investigating various
types of geological and biological materials for which classical theory of elasticity
is not adequate. This theory studies the behavior of elastic porous materials
like the rock, the bone and the manufactured porous materials. The voids are
assumed to contain nothing of mechanical or energetic significance.

Recently the linear theory of elasticity for materials with voids has been
expanding and developing in different directions. For example, the non-linear
version of elastic materials with voids was proposed by Nunziato and Cowin
[1] and the linear version was developed by Cowin and Nunziato [2] to study
mathematically the mechanical behavior of porous solids. Ieşan in [3] established
a variational theory for thermoelastic materials with voids. In [4, 5] Ciarletta
and Scalia studied a linear theory of thermoelasticity for materials with voids
and established uniqueness and reciprocal theorems. In [6] Ieşan and Quintanilla
have developed the theory of Nunziato and Cowin for thermoelastic deformable
materials with double porosity structure by using the mechanics of materials with
voids.

Many problem have been considered for elastic materials with voids by many
authors (some of those articles can be seen, for instance, in [7-23] and the refer-
ences cited therein).

In the present paper we consider the elastic infinite strip with voids. General
representations of a regular solution of a system of equations for a homogeneous
isotropic medium with voids are constructed by means of the elementary (har-
monic, bi-harmonic and meta-harmonic) functions. Using the Fourier method,
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the basic BVPs are solved effectively (in quadratures) for the infinite strip.

2. Basic equations and boundary value problems

Let D denote an infinite strip with voids 0 < x2 < H, −∞ < x1 < +∞.

Let x := (x1, x2) ∈ D. ∂x :=

(
∂

∂x1
,
∂

∂x2

)
. The boundaries of D are x2 = 0 and

x2 = H.
We say that a body is subject to a plane deformation if the component u3

of the displacements vector u(u1, u2, u3) vanish and the other components are
functions of the variables only x1, x2.Then the basic system of linearized equations
of motion in the theory of elasticity for homogeneous and isotropic materials with
voids structure can be written as

µ∆u+ (λ+ µ)graddivu+ βgradφ = 0,

(α∆− ς)φ− β divu = 0,
(1)

where u = (u1, u2)
⊤ is the displacement vector in a solid, φ is the changes

of volume fractions from the reference configuration. λ, µ, β, α, ς, are
constitutive coefficients, ∆ is the 2D Laplace operator. Throughout this paper
the superscript ⊤ denotes transposition.

For the equation (1) the basic BVPs for an infinite strip are formulated as
follow: Find a regular function U(x), satisfying in D the system (1), when on
the boundary of the domain D one of the the following conditions are given:

Problem 1.

u+ = f+(x1), φ = f+3 , x2 = 0, u− = F−(x1), φ = F−
3 , x2 = H,

Problem 2.

[TU]+ = f+(x1), φ = f+3 , x2 = 0, [TU]− = F−(x1), φ = F−
3 x2 = H,

where T(∂x,n)u is the following vector

T(∂x,n)u :=


µ
∂

∂x2
µ
∂

∂x1

λ
∂

∂x1
µ0

∂

∂x2

u+ βnφ,

µ0 = λ+ 2µ, n = (0, 1).

The vectors functions f(f1, f2), F(F1, F2) and the functions f3, F3 are given func-
tions on the boundary D, satisfying certain smoothness conditions and also the
conditions at infinity.
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3. A representation of regular solutions

The following theorems hold:

Theorem 1. If U := (u, φ) is a regular solution of the homogeneous system
(1) then u, and φ satisfy the equations

∆∆(∆− s21)u = 0,

∆(∆− s21)φ = 0,
(2)

where

s21 =
µ0ς − β2

µ0α
.

Proof. From (1) it follows that

divu =
1

β
[α∆− ζ]φ. (3)

Applying the operator div to equation (1)1 and taking into account (3), we obtain

∆(∆− s21)φ = 0 (4)

Further, applying the operator ∆(∆− s21) to equation (1)1, and using the latter
relation we obtain

∆∆(∆− s21)u = 0,

which completes the proof.

Theorem 2. The regular solution U = (u, φ) of system (1) admits in the
domain of regularity a representation

u = Ψ− grad

[
a0h0 +

βh1
µ0s21

]
,

φ = h+ h1, divu = − ς

β
h− β

µ0
h1,

(5)

where

a0 =
β2 − (λ+ µ)ς

µβ
, µ0 = λ+ 2µ, ∆h = 0, (∆− s21)h1 = 0,

the functions Ψ and h0 are chosen so that

∆h0 = h, divΨ = mh, m =
β2 − µ0ς

µβ
.

Proof. Since φ is the solution of equation (4), we can write [26]

φ = h+ h1, (6)

where

∆h = 0, (∆− s21)h1 = 0.
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Further, substituting (6) into (3), we conclude

divu = − ς

β
h− β

µ0
h1.

Let us assume that the functions h and h1 are known, when x ∈ D, then from
(1), after obvious transformations, for u we get the following nonhomogeneous
equation

∆u = −grad

[
a0h+

β

µ
h1

]
, (7)

The general solution of equation (7) has the form

u = Ψ+ u0,

where u0 is a particular solution of equation (7)

u0 = −grad

[
a0h0 +

β

µ0s21
h1

]
, (8)

The functions Ψ and h0 satisfy the following conditions

∆Ψ = 0, ∆h0 = h, divΨ = mh.

Thus, we have obtained the general solution of system (1) in the form (5).

Here and in what follows we assume that the prescribed on the boundaries
(x2 = 0 and x2 = H.) functions be representable by the Fourier integrals (see
[27])

F̂(x1) =
1√
2π

+∞∫
−∞

F(ξ) exp(−ix1ξ)dξ

and the inversion formula

F(ξ) =
1√
2π

+∞∫
−∞

F̂(x1) exp(ix1ξ)dx1

is valid.

4. Solution of Problem 1 for an infinite strip

In this section, to illustrate the suggested method, we construct an explicit
solution of Problem 1 for an infinite strip with voids in details. Quite similarly,
we can construct the solution of Problem 2.

We are looking for a solution of the system (1), under BCs of Problem 1, in
the form (5), where the functions h, h1(x), and Ψ are sought in the form
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h =
1√
2π

+∞∫
−∞

[
η(ξ)e−x2|ξ| + ν(ξ)e(x2−H)|ξ|)

]
eix1ξdξ,

Ψ =
1√
2π

+∞∫
−∞

[
η(4)(ξ)e−x2|ξ| + ν(4)e(x2−H)|ξ|

]
exp(ix1ξ)dξ,

h1 =
1√
2π

+∞∫
−∞

[
η1(ξ)e

−x2r1 + ν1(ξ)e
(x2−H)r1

]
eix1ξ]dξ,

r21 = ξ2 + s21, η(4) = (η
(4)
1 , η

(4)
2 ), ν(4) = (ν

(4)
1 , ν

(4)
2 ),

(9)

where η(4), ν(4), ηk, η, ν and νk are absolutely integrable unknown vector
functions;

Owing to the fact that ∆h0 = h, the function h0 can be represented in the
following form

h0 =
−x2
2
√
2π

+∞∫
−∞

η(ξ)e−x2|ξ|eix1ξ dξ

|ξ|
+
x2 −H

2
√
2π

+∞∫
−∞

ν(ξ)e(x2−H)|ξ|eix1ξ dξ

|ξ|
, (10)

We introduce the following functions

[divu]+ = F+
4 , [divu]− = F−

4 .

Let us substitute expression (9) into (5), pass to the limit as x2 → 0 and x2 →
H, and taking into account boundary conditions, for determining the unknown
values, from (5), we obtain the following system of equations

[Ψ]+ = f+ +

[
grad

[
a0h0 +

βh1
µ0s21

]]+
,

h+ + h+1 = f+3 , − ς

β
h+ − β

µ0
h+1 = F+

4 ,

[Ψ]− = F− +

[
grad

[
a0h0 +

βh1
µ0s21

]]−
,

h− + h−1 = F−
3 , − ς

β
h− − β

µ0
h−1 = F−

4 ,

(11)

By solving h±, h±1 and Ψ± from Eq. (11) we obtain:
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h+ = − β

αs21

[
β

µ0
f+3 + F+

4

]
= G+, h+1 =

β

αs21

[
ς

β
f+3 + F+

4

]
= G+

1 ,

[Ψ]+ = f+ +

[
grad

[
a0h0 +

βh1
µ0s21

]]+
= G+

2 ,

h− = − β

αs21

[
β

µ0
F−
3 + F−

4

]
= G−, h−1 =

β

αs21

[
ς

β
F−
3 + F−

4

]
= G−

1 ,

[Ψ]− = F− +

[
grad

[
a0h0 +

βh1
µ0s21

]]−
= G−

2 ,

(12)

On the other hand, from (9) and (12) it is evident that

η(ξ) + ν(ξ)e−H|ξ| = Ĝ+, η(ξ)e−H|ξ| + ν(ξ) = Ĝ−,

η1(ξ) + ν1(ξ)e
−Hr1 = Ĝ+

1 , η1(ξ)e
−Hr1 + ν1(ξ) = Ĝ−

1 ,

η(4)(ξ) + ν(4)e−H|ξ| = Ĝ+
2 , η(4)(ξ)e−H|ξ| + ν(4) = Ĝ−

2 ,

(13)

where Ĝ+
k , Ĝ−

k ... are Fourier transform of the functions G+
k , G−

k .... respectively.
After some transformation, from (13) we find

η =
Ĝ+ − e−H|ξ|Ĝ−

1− e−2H|ξ| , ν =
Ĝ− − e−H|ξ|Ĝ+

1− e−2H|ξ| ,

η1 =
Ĝ+

1 − e−Hr1Ĝ−
1

1− e−2Hr1
, ν1 =

Ĝ−
1 − e−Hr1Ĝ+

1

1− e−2Hr1
,

η(4) =
Ĝ+

2 − e−H|ξ|Ĝ−
2

1− e−2H|ξ| , ν(4) =
Ĝ−

2 − e−H|ξ|Ĝ+
2

1− e−2H|ξ| ,

(14)

The obtained values (14) are substituted into (9), which yields

h(x) =
1√
2π

+∞∫
−∞

[
Ĝ+ sinh(H − x2)|ξ|+ Ĝ− sinhx2|ξ|

sinhH|ξ|

]
eix1ξdξ,

h1 =
1√
2π

+∞∫
−∞

[
Ĝ+

1 sinh(H − x2)r1 + Ĝ−
1 sinhx2r1

sinhHr1

]
eix1ξdξ,

Ψ(x) =
1√
2π

+∞∫
−∞

[
Ĝ+

2 sinh(H − x2)|ξ|+ Ĝ−
2 sinhx2|ξ|

sinhH|ξ|

]
eix1ξdξ,

(15)
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Substituting (15) into (5), we get the solution U = (u, ϕ) of Problem 1 in quadra-
tures.

5. Solution of Problem 2 for an infinite strip

Following the procedure, quite similarly as above, we can construct a solution
of Problem 2 for an elastic strip with voids.

We are looking for a solution of the system (1), in the form (5), where the
functions h, h1 and Ψ are sought in the form (9).

Keeping in mind that

[TU ]1 = µ

[
∂ψ1

∂x2
+
∂ψ2

∂x1
− 2

∂2

∂x1∂x2

(
a0h0 +

βh1
µ0s21

)]
.

[TU ]2 =

[
β − λζ

β

]
h+ 2µ

∂ψ2

∂x2
+

2βµ

µ0

[
1− 1

s21

∂2

∂x22

]
h1 − 2µa0

∂2h0
∂x22

,

(16)

and using the boundary conditions, we obtain:

when x2 = 0

[TU ]1 = µ
[
−|ξ|η(4)1 + |ξ|ν(4)1 e−H|ξ| + iξ(η

(4)
2 + ν

(4)
2 e−H|ξ|)

]
−µa0iξ

[
−η
|ξ|

+ ν

(
1

|ξ|
−H

)
e−H|ξ|

]
− 2µiξ

βr1
µ0s21

(
−η1 + ν1e

−Hr1
)
= f̂+1 ,

[TU ]2 =

[
β − λζ

β

]
[η + νe−H|ξ|] + 2µ|ξ|[−η(4)4 + ν

(4)
2 e−H|ξ|]

−2µ|ξ|2 β

µ0s21

(
η1 + ν1e

−Hr1
)
− 2µa0

[
η + ν

(
1− H|ξ|

2

)
e−H|ξ|

]
= f̂+2 ,

h+ + h+1 = f+3 , − ς

β
h+ − β

µ0
h+1 = F+

4 ,

(17)

when x2 = H

[TU ]1 = µ
[
−|ξ|η(4)1 e−H|ξ| + |ξ|ν(4)1 + iξ(η

(4)
2 e−H|ξ| + ν

(4)
2 )

]
−µa0iξ

[(
H − 1

|ξ|

)
ηe−H|ξ| +

ν

|ξ|

]
− 2µiξ

βr1
µ0s21

(
−η1e−Hr1 + ν1

)
= F̂1

−
,

[TU ]2 =

[
β − λζ

β

]
[ηe−H|ξ| + ν] + 2µ|ξ|[−η(4)2 e−H|ξ| + ν

(4)
2 ]

−2µ|ξ|2 β

µ0s21

(
η1e

−Hr1 + ν1
)
− 2µa0

[
ν +

(
1− H|ξ|

2

)
ηe−H|ξ|

]
= F̂2

−
,

h− + h−1 = F−
3 , − ς

β
h− − β

µ0
h−1 = F−

4 ,

(18)
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From (17, 18), by the same calculations, as above, we derive

h+ = − β

αs21

[
β

µ0
f+3 + F+

4

]
= G+, h+1 =

β

αs21

[
ς

β
f+3 + F+

4

]
= G+

1 ,

h− = − β

αs21

[
β

µ0
F−
3 + F−

4

]
= G−, h−1 =

β

αs21

[
ς

β
F−
3 + F−

4

]
= G−

1 ,

On the other hand, for determining the unknown coefficients, we obtain from (9)
the equations

η(ξ) + ν(ξ)e−H|ξ| = Ĝ+, η(ξ)e−H|ξ| + ν(ξ) = Ĝ−,

η1(ξ) + ν1(ξ)e
−Hr1 = Ĝ+

1 , η1(ξ)e
−Hr1 + ν1(ξ) = Ĝ−

1 ,

(19)

After some transformation, from (19) we find

η =
Ĝ+ − e−H|ξ|Ĝ−

1− e−2H|ξ| , ν =
Ĝ− − e−H|ξ|Ĝ+

1− e−2H|ξ| ,

η1 =
Ĝ+

1 − e−Hr1Ĝ−
1

1− e−2Hr1
, ν1 =

Ĝ−
1 − e−Hr1Ĝ+

1

1− e−2Hr1
,

(20)

substituting (20) into(9), we get

h(x) =
1√
2π

+∞∫
−∞

[
Ĝ+ sinh(H − x2)|ξ|+ Ĝ− sinhx2|ξ|

sinhH|ξ|

]
eix1ξdξ,

h1 =
1√
2π

+∞∫
−∞

[
Ĝ+

1 sinh(H − x2)r1 + Ĝ−
1 sinhx2r1

sinhHr1

]
eix1ξdξ,

(21)

Let us find the expression for Ψk. To this end from (9), (17), and (18), using
some algebraic manipulations, we get

(
−η(4)1 + ν

(4)
1 e−H|ξ|

)
|ξ|+ iξ

(
η
(4)
2 + ν

(4)
2 e−H|ξ|

)
= a0iξ

[
−η
|ξ|

+ ν

(
1

|ξ|
−H

)
e−H|ξ|

]
+ 2iξ

βr1
µ0s21

(
−η1 + ν1e

−Hr1
)
+
f̂1
µ

= Ĝ2,

2|ξ|
(
−η(4)2 + ν

(4)
2 e−H|ξ|

)
= 2|ξ|2 β

µ0s21

(
η1 + ν1e

−Hr1
)

+2a0

[
η + ν

(
1− H|ξ|

2

)
e−H|ξ|

]
+

1

µ
f̂2 −

1

µ

[
β − λζ

β

](
η + νe−H|ξ|

)
= Ĝ3 (22)
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(
−η(4)1 e−H|ξ| + ν

(4)
1

)
|ξ|+ iξ(η

(4)
2 e−H|ξ| + ν

(4)
2 )

= a0iξ

[(
H − 1

|ξ|

)
ηe−H|ξ| +

ν

|ξ|

]
+ 2iξ

βr1
µ0s21

(
−η1e−Hr1 + ν1

)
+

1

µ
F̂1 = Ĝ4,

2|ξ|
(
−η(4)2 e−H|ξ| + ν

(4)
2

)
= 2|ξ|2 β

µ0s21

(
η1e

−Hr1 + ν1
)

−2a0

[
ν +

(
1− H|ξ|

2

)
ηe−H|ξ|

]
+

1

µ
F̂2 −

1

µ

[
β − λζ

β

]
[ηe−H|ξ| + ν]= Ĝ5, (23)

After certain calculations, it follows from Eqs. (22) and (23) that

η
(4)
2 =

Ĝ3 − e−H|ξ|Ĝ3

2|ξ|(−1 + e−2H|ξ|)
, ν

(4)
2 =

−Ĝ5 + e−H|ξ|Ĝ3

2|ξ|(−1 + e−2H|ξ|)
,

η
(4)
1 =

Ĝ2
′
− e−H|ξ|Ĝ4

′

|ξ|(−1 + e−2H|ξ|)
, ν

(4)
1 =

−Ĝ4
′
+ e−H|ξ|Ĝ2

′

|ξ|(−1 + e−2H|ξ|)
,

(24)

where

Ĝ2
′
= Ĝ2 − iξ(η

(4)
2 + ν

(4)
2 e−H|ξ|), Ĝ4

′
= Ĝ4 − iξ(η

(4)
2 e−H|ξ| + ν

(4)
2 ).

We assume that f̂(0) = F̂ (0). This condition means that the principal vector of
external stresses is equal to zero.

Substituting (24) into (9), we get

Ψ1(x) =
1√
2π

+∞∫
−∞

[
Ĝ′

2 cosh(H − x2)|ξ| − Ĝ′
4 coshx2|ξ|

−|ξ| sinhH|ξ|

]
eix1ξdξ,

Ψ2(x) =
1√
2π

+∞∫
−∞

[
Ĝ3 cosh(H − x2)|ξ| − Ĝ5 coshx2|ξ|

−2|ξ| sinhH|ξ|

]
eix1ξdξ,

(25)

For the existence of a solution of Problem 2 it is necessary that the principal
vector and the principal moment of external stresses acting on the boundaries
of the domain D be equal to zero. As is known from the general theory these,
conditions are sufficient as well.
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