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Variational Principles in Coupled Strain Gradient Elasticity
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In recent years, generalized continuum models have been increasingly used again to solve
tasks that cannot be analyzed using classical approaches. Here we report on some variational
principles of the generalized theories, which show that the classical theories can be extended
elementarily. The paper is a review article of the state of art in this field and some contributions
of the authors during the last year. With respect to this some theorems are indicated - the
proofs can be taken from our papers cited below.
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1. Motivation

The classical theory of elasticity allows the solution of numerous initial boundary
value problems. At the same time, special problems, such as concentrated loads
or corner problems, cannot be solved within the framework of the classical theory
of elasticity. Other approaches such as generalized continua [1] or peridynamic
considerations [2] allow better (more correct) solutions. At the same time, the
question arises as to how accurate such theories are in comparison to the classical
theory of elasticity. One way of testing the exactness is to formulate the analogies
of the classical variational principles.

The first gradient elasticity theories were established by F. and E. Cosserat [3]
creating the polar media. Firstly the micro-rotations and the associated coupled
stresses in the motion equations were introduced by Hellinger [4] who drew at-
tention to the problem of asymmetric stresses of the Cosserat medium. A strain
gradient model for fluids was studied by Korteweg [5] and by Cahn and Hilliard
[6, 7]. The Cosserat theory was extended to coupled stress theories introduced by
Toupin [8], Mindlin and Tiersten [9] and others.

The Cosserat theory was extended to full stress theories (including double stress)
as follows

• first strain gradient continua was introduced by Mindlin [10] and Mindlin and
Eshel [11] (statics and dynamics),

∗ Corresponding author. Email: holm.altenbach@ovgu.de

ISSN: 1512-0511 print
© 2024 Tbilisi University Press



10 Lecture Notes of TICMI

• second gradient continua was elaborated in Germain [12] and Mindlin [14],
• stress gradient elasticity model was proposed by Eringen [15], who reformulated

his earlier studies on nonlocal elasticity,
• considering size effects (cf. Altan and Aifantis [16], Lurie et al. [17], Ma and Gao

[18]),
• removing singularities in the stresses and displacements for boundary conditions

with discontinues (e.g., Askes et al. [19], Georgiadis and Anagnostou [20], Reiher
et al. [21]),

• describing phenomena in the micro- and nanometer range like dislocations [22–
24], and

• catching some the phenomena in region with stress concentration [25], and
• including boundary and surface energies [26].

1.1. Classical elasticity

Let us assume within the linear elasticity [27] that the strain energy W depends
only on the strain tensor E2

W =
1
2
E2··C4··E2 (1)

with

E2 =
1
2

[
∇u + (∇u)T

]
, T2 = C4··E2.

Here u is the displacement vector, T2 is the Cauchy stress tensor and C4 is the
fourth rank elasticity tensor containing the elastic parameters of the considered
linear-elastic material. ∇ denotes the Hamilton operator, which acts as follows on
the displacement field u

u⊗∇ =
∂ui

∂xj
eiej = ui,jeiej

and · the scalar (dot) product. In this case the size and the shape of the sam-
ple is removed from the material modelling by Hooke’s law since the strains are
dimensionless.

The classical elasticity has a limited range of application w.r.t.

• size effects and
• discontinuous boundary conditions

among others. The first limitation is due to the fact, that the strains are dimen-
sionless and becomes apparent when small structures are considered. The second
limitation is encountered in almost all boundary problems that contain edges, cor-
ners and concentrated forces.
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1.2. Strain gradient elasticity

In this case (first possible extension) the strain energy W depends not only on the
strain tensor E2, but also on the second derivatives of the displacements E3

W (E2,E3) =
1
2
E2··C4··E2 +

1
2
E3· · ·C6· · ·E3, E3 = u⊗∇⊗∇. (2)

C6 is the 6th rank tensor of material parameters. ⊗ denotes the dyadic product.
With the increasing miniaturization of components and targeted development of

micro-structured materials we need to go beyond the classical theory of elasticity
and the limitations of classical elasticity theory can be overcome with gradient
expansion of energy (Enisthe(n− 1)-fold gradient of displacement)

W (E2,E3) =
1
2
E2··C4··E2+

1
2
E3· · ·C6· · ·E3+ . . .+

1
2
En · . . . ·︸︷︷︸

n times

C2n · . . . ·︸︷︷︸
n times

En. (3)

The last one is a quadratic form without coupled terms.

1.3. Coupled strain gradient elasticity

In this case the strain energy W is not only a quadratic form on the strain tensor
E2 and on second derivatives of the displacement E3, but contains also coupled
terms

W (E2,E3) =
1
2
E2··C4··E2 + E2··C5· · ·E3 +

1
2
E3· · ·C6· · ·E3. (4)

C5 is the 5th rank tensor of material parameters.
In classical elasticity there are 8 symmetry classes: triclinic, monoclinic, or-

thotropic, trigonal, tetragonal, transversely isotropic, cubic and isotropic [28]. In
gradient elasticity 17 symmetry classes need to be distinguished, namely triclinic,
planar rotations of period 2 to 6 with and without rotations by π around the axes
inside the plane, transversely isotropic with and without rotations by π around
axes perpendicular to the axis of transverse isotropy, tetra-, octa- and icosahedral
symmetries and isotropy.

1.3.1. Basic relations of coupled strain gradient elasticity

Let us introduce the energy density in the simplest case of coupled strain gradient
elasticity as Eq. (4). The C4,C5 and C6 are the relevant stiffness tensors of fourth-,
fifth- and sixth-rank. It is obvious that in the case of anisotropic linear elasticity, the
number of entries in the tensors becomes very large. Due to a lack of experimental
data, concretizations of the tensors for the case of general anisotropy are not known.

With the help of Eq. (4) the stress tensor T2 and the double stress tensor T3

can be computed as

T2 =
∂W

∂E2
= C4··E2 + C5· · ·E3, T3 =

∂W

∂E3
= CT

5 ··E2 + C6· · ·E3. (5)

The calculation of these tensors is a well-known from the classical elasticity proce-
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dure [27]. As shown in [29] the tensors E2,E3,C4,C5 and C6 have following general
symmetries (not following from the assumption of special cases of anisotropy)

Eij = Eji, Eijk = Ejik,

Cijkl = Cklij = Cjikl = Cijlk,

Cijkln = Cjikln = Cijknl,

Cijklmn = Clmnijk = Cikjlmn = Cijklnm

One principle assumption in the theory of elasticity is the positive definiteness
of the potential energy (4) [27], which is not easy to prove in the case of coupled
strain gradient elasticity. The tensor C5 is symmetric with respect to the first two
and to the last three indices CT

ijklm = Cklmij , i.e. the first two and the last three
entries are exchanged en bloc, such that

E2··C5· · ·E3 = E3· · ·CT
5 ··E2

The positive definiteness can be shown with the help of block diagonalizations.
There are two possibilities:

(1) variant
This variant is based on the following modifications of the strain and strain
gradient energy density

W =
1
2
Em

2 ··C4··Em
2 +

1
2
E3· · ·Cm

6 · · ·E3 (6)

The superscript m denotes the modified strains and the modified stiffness
tensor

Em
2 = E2 + E3· · ·CT

5 ··C−1
4 , Cm

6 = C6 −CT
5 ··C−1

4 ·C5

(2) variant
Now we assume the following modified strain and strain gradient energy
density

W =
1
2
E2··Cm

4 ··E2 +
1
2
Em

3 · · ·C6· · ·Em
3 (7)

The superscript m denotes the modified second gradient of displacement
and the modified stiffness tensor

Em
3 = E3 + E2··C5· · ·C−1

6 , Cm
4 = C4 −C5· · ·C−1

6 · · ·CT
5
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The modified relations were obtained for arbitrary material symmetry classes in [30,
31]. It is obvious that (6) and (7) are quadratic forms and the positive definiteness
of the potential energy is guaranteed.

1.3.2. Representation of the stiffness tensors for the case of hemitropy

In accordance with dell’Isola et al. [32], Glüge et al. [13], and Mindlin [10] we
obtain the following representations for the stiffness tensors C4,C5 and C6

C4 = [λδijδkl + µ(δikδjl + δilδkj)]ei ⊗ ej ⊗ ek ⊗ el,

C5 = [κ(εimkδjl + εilkδjm + εjmkδil + εjlkδim)]ei ⊗ ej ⊗ ek ⊗ el,

C6 = [c1(δjkδimδnl + δjkδinδml + δijδklδnl + δjkδimδmn)
+ c2(δijδkmδnl + δjmδklδnl + δijδknδml + δjnδikδml)
+ c3(δjmδklδin + δjlδinδkm + δjnδimδkl + δjlδimδnk)
+ c4(δjnδilδkm + δjmδknδil)
+ c5δilδjkδmn] ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en.

λ and µ are Lamé’s parameters, and κ and c1, . . . , c5 are higher order material
parameters.

Assuming hemitropic symmetry the well known constraints from classical me-
chanics for λ and µ

µ > 0, 3λ + 2µ > 0

can be derived. In addition, the constraints for constitutive parameters c1,...,5 and
κ can be obtained

c4 > 0, c4 − 6κ2/µ > c3 > c4/2, c5 > 2/5(c3 − c4),

c2 >
−10c2

1 − 12c1c3 − 4c2
3 + 4c1c4 + 2c3c4 + 2c2

4 + c3c5 + 3c4c5

2(2c3 − 4c4 − 5c5)

Note, that

• for hemitropic materials only one of the inequality constraints for constitutive
parameters is affected by presence of the coupling tensor and

• due to the coupling, the shear modulus appears when requiring positive definite-
ness of the sixth-rank stiffness.

1.3.3. Complementary energy

Applying the Legendre transform to Eq. (4) we get

W ∗(T2,T3) =
1
2
T2··S4··T2 + T2··S5· · ·T3 +

1
2
T3· · ·S6· · ·T3

with the stress tensors (5).

(1) variant
Taking into account (6) modified strain and strain gradient energy density
we can write down the complementary energy density

W ∗ =
1
2
T2··C−1··T2 +

1
2
Tm

3 · · ·Cm
6 · · ·Tm

3 ,
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with

T2 = C4··Em
2 , T3 = Cm

6 · · ·E3.

The compliance tensors can be defined as [30, 31]

S4 = C−1
4 + C−1

4 ··C5· · ·(Cm
6 )−1· · ·CT

5 ··C
−1
4 ,

S5 = C−1
4 + C−1

4 ··C5· · ·(Cm
6 )−1,

S6 = (Cm
6 )−1.

(2) variant
Taking into account (7) modified strain and strain gradient energy density
we can write down the complementary energy density

W ∗ =
1
2
Tm

2 ··(Cm
4 )−1··Tm

2 +
1
2
T3· · ·C−1

6 · · ·T3,

with

Tm
2 = Cm

4 ··E2, T3 = C6· · ·Em
3

The compliance tensors are in this case [30, 31]

S4 = (Cm
4 )−1,

S5 = (Cm
4 )−1··C5· · ·C−1

6 ,
S6 = C−1

6 + C−1
6 · · ·CT

5 ··(Cm
4 )−1 · ·C5· · ·C−1

6 .

Let us summarize the results. The following changes should be performed to guar-
antee the equivalence of the potential and the complementary energies:

(1) variant

{C4,C5,C6} → {C4,Cm
6 },

{C4,Cm
6 } → {S4,Sm

6 },

{S4,Sm
5 } → {S4,S5,S6}

(2) variant

{C4,C5,C6} → {Cm
4 ,C6},

{Cm
4 ,C6} → {Sm

4 ,S6},

{Sm
4 ,S6} → {S4,S5,S6}
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In addition, the compliance tensors obtained from the both variants of modified
energy density are identical and the tensorial relations for the compliance tensors
are obtained for arbitrary material symmetry classes.

2. Variational equation of the equilibrium and boundary conditions

2.1. Variational equation

Let us introduce the variational equation of the equilibrium. The total potential
energy with a variation of u is

δ

∫
V

WdV =
∫
V

(T2··δE2 + T3· · ·δE3)dV

or

δ

∫
V

WdV =
∫
V

δu(T2 −T3 · ∇) · ∇dV

+
∫
S

δu {(T2 −T3 · ∇ −T3 · ∇S) · n

+ T3··[(n · ∇S)n⊗ n− n⊗∇S ]}dS
+ δu⊗∇n··T3 · ndS

+
∮
C

δu · (T3··n⊗m)]dC.

Then the principle of the Lagrangian stationary (principle of virtual power) is

δL = δA− δ

∫
V

WdV = 0,

where A is a work of external forces and double forces and W is a strain and strain
gradient energy density. The variation of the strain and strain gradient energy
requires an admissible form of the work

A =
∫
V

u · fdV +
∫
S

(u · p + u⊗∇n··R)dS +
∮
C

u · cdC

=
∫
V

u · fdV +
∫
S

(u · p + Du·rn)dS +
∮
C

u · cdC

with

u⊗∇n =
∂ui

∂xj
njei ⊗ n = (Du)⊗ n, Du = (⊗∇) · n.

On details including the uniqueness is reported in [33].
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2.2. Boundary conditions

2.2.1. Natural boundary conditions

The stress equilibrium equation is

(T2 −T3 · ∇) · ∇+ f = 0

and the natural (static) boundary conditions for the surface tractions and the edge
forces, which can be prescribed, are:

• vector field of the tractions on the part of the surface of the body Sd

ppr = (T2 −T3 · ∇ −T3∇S) · n + T3··[(n · ∇S)n⊗ n− n⊗∇S ,

• double tractions in normal direction on Sg

rn pr = T3··n⊗ n on Sg,

• line forces on edge on the part of edge Cg

cpr = T3··n⊗m on Cg.

Subscript “pr” denotes “prescribed” and Sd is the surface where the natural or
traction boundary conditions are prescribed.

2.2.2. Displacement boundary conditions

The stress equilibrium equation is as in the previous case. The displacement
(kinematic) boundary conditions in terms of the displacement fields u and its
normal gradient, which can be prescribed as:

• displacement field u on the part of the surface of the body Sg

upr = u on Sg,

• normal gradient of the displacement field u on Sg

Dupr = Du on Sg,

• displacement u on the part of the edge Cg

upr = u on Cg.

2.2.3. Mixed boundary conditions

Now the stress equilibrium equation is as follows

(T2 −T3 · ∇) · ∇+ f = 0.

The mixed boundary conditions, prescribed are:

• body force f in the interior of the body V ,
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• vector field of the tractions p on the part of the surface of the body Sd,
• displacement fields u on the surface of the body Sg,
• double tractions rn in normal direction on the surface of the body Sd,
• normal gradient of the displacement fields Du on the surface Sg,
• line forces con edge on the edges Cd of the surface of the body S,
• displacement fields u on the edge Cg of the surface of the body S,

Sd

⋃
Sg = S, Cg

⋃
Cg = C.

3. Principles of minimum of the potential and complementary energy

3.1. Uncoupled strain gradient elasticity

Let us assume the simplest form (no coupling)

W ∗(T2,T3) =
1
2
T2··S4··T2 +

1
2
T3· · ·S6· · ·T3, S3 = 0.

The generalization of the principle of minimum of potential energy to gradient elas-
ticity is relatively simple, see e.g. Kirchner and Steinmann [34], Polizzotto [35, 36],
Gao and Park [37], Georgiadis and Grentzelou [38]. The extension of the princi-
ple of minimum of complementary energy is less clear. There are some works, like
Polizzotto [36], Georgiadis and Grentzelou [38] examining the stress gradient elas-
ticity. The change of the independent variable from one displacement field to several
stress fields (T2 and T3) is rather complicated. It is not necessary in Polizzotto
[36], since he considers a stress field and its gradient.

3.2. Coupled strain gradient elasticity

3.2.1. Principle of minimum of potential energy

Theorem 3.1 : Let us consider the linear elastic gradient material with the posi-
tive definite potential energy density, let A be the set of all (compatible) vector fields
u(x) which fulfil the displacement boundary conditions on the part of the body sur-
face Sg(Sd

⋃
Sg = S) and on the part of the surface edge Cg(Cd

⋃
Cg = C). We

define the following functional Φ : A → R

Φ(u) ≡ δ

∫
V

WdV −
∫
V

δu · fdV −
∫
Sd

(δu · ppr) + Dδu · rn pr)dS +
∮
Cd

u · cprdC.

where body forces, surface tractions and edge forces are prescribed. Then the func-
tional obtains a minimum for the solution u0 of the mixed boundary value problem,
i.e.,

Φ(u0) ≤ Φ(u) ∀u ∈ A

If the equality holds, then u0 and u differ only by a rigid body displacement

u(x)− u0(x) = uc + ΩΩΩ · (x− x0)
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where uc and x0 are two constant vectors and ΩΩΩ is a constant antisymmetric tensor.

The proof of this theorem is given in [39].

3.2.2. Principle of minimum of complementary energy

Theorem 3.2 : Let us consider the linear elastic gradient material with the
positive definite complementary energy density, let T be the set of symmetric
stress fields T2 and of couple stress fields T3 that obey the equilibrium conditions
(T2 − T3 · ∇) · ∇ + f = 0 and the natural boundary conditions for the prescribed
vector field of the tractions, the double tractions in normal direction, and the line
forces on Sd and Cd. Then the functional

Ψ(T2,T3) =
∫
V

W ∗dV −
∫
Sg

(upr · p + Dupr · rn)dS −
∮

upr · pdC

with the complementary elastic energy W ∗ obtains for the solution T0
2,T

0
3 of the

mixed boundary value problem a minimum in T, i.e.,

Ψ(T0
2,T

0
3) ≤ Ψ(T2,T3) ∀T2,T3 ∈ T

Ψ(T0
2,T

0
3) ≤ Ψ(T2,T3) ∀T2,T3 ∈ T

If the equality holds, then

T0
2 = T2 and T0

3 = T3.

The proof of this theorem is given in [39].

4. Concluding remarks

The well-established theoretical foundations of classical elasticity can be expanded
to coupled strain gradient elasticity. The positive definiteness conditions for the
strain and strain gradient energy within linear coupled gradient elasticity have
been obtained for a hemitropic material. In the case of hemitropic materials only
one of the inequality constraints for the constitutive parameters c1,2,3,4,5 is affected
by presence of coupling tensor C5. The inverse Hooke’s law and complementary
strain energy density has been examined in the context of the theory of coupled
gradient elasticity; results are valid for an arbitrary material symmetry class. The
most important theorems of classical elasticity can be proved for coupled strain
gradient elasticity (uniqueness theorem, principles of a minimum of potential and
complementary energies, reciprocal theorem).
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