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About the Numerical Solutions of Two Nonlinear
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In this work we consider the issues of the approximate solutions and the results of numerical
computations for the following two practical problems: 1. Non-linear initial-boundary value
problem for the J. Ball dynamic beam. 2. Non-linear initial-boundary value problem for the
Kirchhoff dynamic string.

A mathematical model is formulated for an initial-boundary value problem associated with
the J. Ball integro-differential equation, which serves as a mathematical description of the
dynamic state exhibited by a beam. The solution to this problem is approximated through a
combination of the Galerkin method, a stable symmetrical difference scheme, and the Jacobi
iteration method. Our aim is to present an approximate solution to a problem, specifically
focusing on the numerical results obtained from the initial-boundary value problem pertaining
to a specific iron beam. Notably, the effective viscosity of the material is considered to be
dependent on its velocity.

We consider the numerical algorithm for the Kirchhoff type inhomogeneous integro-
differential equation describing the string oscillation. The algorithm has been approved by
tests and the results of calculations is presented in tables and graphs.

The presented article is a direct continuation of the articles [1]-[4] and [8]-[9] that consider
the construction of algorithms and their corresponding numerical computations for the ap-
proximate solution of nonlinear integro-differential equations for the J. Ball dynamic beam
(see [1]-[4]) and for the Kirchhoff dynamic string (see [8]-[9]).
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Statement of the Problem 1

Let us consider the nonlinear equation
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with the initial boundary conditions

u(z,0) = u? (), w(x,0)= ul (x), (2)

w(0,t) =u(L,t) =0, gy (0,t) = ugy (L,t) =0. (3)

In the given context, let a,~v,x,0,0, and J be constants, where the first four
are positive numbers. Furthermore, consider the functions u°(z) € W2(0,L) and
ul(z) € Ly(0, L), satisfying the conditions u°(0) = u'(0) = w(L) = v!(L) = 0.
The right-hand side function f(z,t) belongs to La((0, L) x (0,7")). We assume the
existence of a solution u(z,t) € WZ((0,L) x (0,T)) for problem (1)-(3).

The present article serves as a direct continuation of previous works [1]-[4], which
focused on developing algorithms and performing corresponding numerical com-
putations for approximating solutions to nonlinear integro-differential equations
of the Timoshenko type. In this particular study, we address an initial-boundary
value problem associated with the J. Ball integro-differential equation, which char-
acterizes the dynamic state of a beam (see [5]). To approximate the solution, we
employ the Galerkin method, a stable symmetric difference scheme, and the Jacobi
iteration method. The algorithms proposed in [2]-[3] have been validated through
various tests. Additionally, this article, along with [4], presents an approximate
solution to a practical problem. Specifically, we provide numerical results for the
initial-boundary value problem concerning an iron beam, which are presented in a
tabular form.

The physical model utilized by J. Ball in his publication [5] is derived from
the Handbook of Engineering Mechanics, authored by E. Mettler (see [6]). In this
model, the corresponding initial-boundary value problem for the integro-differential
equation governing the behaviour of a beam (denoted as equation (1)) is formu-
lated. The constants «, v, k, o, 3, and § present in the problem are defined as
follows:

E-T P E-A-A n- I E-A An
= — = y = y R=577—7, 0= 7.
P L-p p 2L-p L-p

Here, E denotes Young’s modulus, A represents the cross-sectional area, n signifies
the effective viscosity, I stands for the cross-sectional second moment of area, p
corresponds to the mass per unit length in the reference configuration, L symbolizes
the length of the beam, A signifies the extension or change in the beam length,
and ¢ refers to the coefficient of external damping.

2. The numerical realization of the Problem 1

To approximate the solutions to initial-boundary value problems (1)-(3), a collec-
tion of programs was developed within the Maple software environment. Subse-
quently, several numerical experiments were conducted to facilitate this approxi-
mation process. The purpose of this paper is to present an approximate solution
to a practical problem. Specifically, the tables in this paper illustrate the results
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obtained from numerical computations of the initial-boundary value problem con-
cerning an iron beam.

Based on the observed numerical experiments, it is evident that as the effective
viscosity, denoted by 7, increases (or decreases), the corresponding numerical val-
ues of the displacement function, u(x,t), for specific values of = and t exhibit a
decreasing (or increasing) trend. Specifically, when considering the case of velocity-
dependent effective viscosity, an increase in velocity leads to a decrease in viscosity,
resulting in amplified deflections (or bending) of the beam. Furthermore, for a fixed
value of 7, the numerical values of the displacement function for a given = tend
to increase as time ¢ progresses. Notably, the numerical values of the displacement
function at a particular ¢ exhibit symmetry with respect to the midpoint of the
beam, located at x = L/2.

3. Statement of Problem 2

Consider the nonlinear inhomogeneous equation

wi(@,t) — <)\ 42 /Oﬂ w2(z, 1) dx) Wan(@, ) = F(2,8), (4)

s

O<x<m 0<t<T,
with the initial boundary conditions

w(z,0) = w’(z), wi(z,0)=w!(x),

w(0,t) = w(m,t) =0,

Here A > 0 and T are given constants, while f(z,t),w’(x),w'(x) are given func-
tions.

The equation (4), when f(x,t) = 0, is proposed by Kirchhoff [7] in 1876. It is a
generalization of D’Alembert string’s oscillation model with equation wy = wyy.
Many authors researched the homogeneous equation, corresponding to (4) and its
generalizations in terms of solvability.

Here we will generalize the numerical algorithm offered in [8]-[9] for the approx-
imate solution of problem (4), (5) for the case f(z,t) = 0. Then we solve test
examples using this algorithm and present the results in tables and graphs.

4. Test examples Problem 2

Here we present results of calculations of two test examples.

Example 4.1 Let T =1, A =0.4,

f(z,t) = 6tsin 2z + (X + 1 + 4t5)(sin z + 4¢3 sin 22),
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w’(z) = sin(x), w!(x) = 0. The exact solution is the function w(z,t) = sinz +
t3 sin 2. The algorithm is applied with n = 5, M = 20 and 7,,, = 0.05. The number
of iterations is k = 9. The error is A¥ = 0.0744789237. The results are presented
below in tables and graphs.

Example 4.2 Let T =1, A = 1.0,

2 21\ (2t t\? .
f(z,t) = (£> sin:c<)\+e> —cosx — 1() sing | | ex™,

T 2t T T

w'(z) = sinz, w'(z) = Lasinz. The exact solution is the function w(z,t)
ex*'sinz. The algorithm is applied with n = 5,M = 20 and 7, = 0.05. The
number of iterations is & = 10. The error is AF = 0.0441088504. The results are
presented below in tables and graphs.

If we increase the values of parametres n and M, the error improves. Namely,
if we take n = 12 and M = 160 in example 4.1, the error is A¥ = 0.0093695833.
If we take n = 12 and M = 80 in example 4.2, the error is A¥ = 0.0096361646.
Based on the obtained results, it can be concluded that the numerical algorithm
for solving problem (4), (5) is effective.
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