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The problem of macroscopic anisotropy of random two-dimensional composite reinforcement
with particles is considered. The investigation is based on the exact solution to the Riemann-
Hilbert and R-linear problems for a multiply connected domain with circular inclusions, along
with approximate analytical formulas for boundary value problems involving harmonic and
biharmonic functions. The anisotropy terms start with the coefficient c2 on f2 in the power
expansion of the effective tensor with respect to the concentration f of circular inclusions.

This coefficient c2 is explicitly expressed by the structural sums e2 and e
(1)
3 . Universal re-

lations, e2 = π and e
(1)
3 = π

2
, apply to any macroscopically isotropic composite with the

changing parameter f . The deviation of e2 and e
(1)
3 for the random location of inclusions

is studied. It is demonstrated that elastic composites described by biharmonic functions are
more isotropically unstable for geometric perturbations than conductive composites described
by harmonic functions.
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1. Introduction

The problem of macroscopic anisotropy of random composite reinforcement with
particles attracts the attention of many physicists and engineers [3, 5, 12]. The
anisotropy can be expressed by the algebraic structure of operators describing an
anisotropic property [14, 15, 30]. The anisotropy of crystals depends upon the
geometrical symmetry of their lattices and yields the classification of crystals re-
viewed in [30]. The geometric method for crystals leads to boundary value problems
for regular periodic structures discussed by analytical and asymptotic methods in
[4, 16, 17, 28]. The derived approximate analytical formulas describe the macro-
scopic anisotropy.

The orientations of the particles can be considered the main factor of anisotropy
of dilute composites when interactions among inclusions do not matter. In this case,
Eshelby’s tensor [7] yields the effective constants up to O(f2), where f denotes the
concentration of inclusions. The term f contains the shape factor of the inclusions,
and the term f2 depends on the location of the inclusions [25].
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We concentrate our attention on two-phase, two-dimensional (2D) composites
for which the classic complex analysis methods were developed in the XX century
[9, 26, 31]. Boundary value problems for composites and porous media can, in many
cases, be considered as the Riemann-Hilbert and R-linear problems [19]. Recent
extensions of constructive complex analysis methods to boundary value problems
for analytic functions [10, 19] and to generalized analytic functions [1, 11] allow us
to apply the obtained results to 2D dispersed composites.

The present paper is based on the exact solution to the Riemann-Hilbert and
R-linear problems for a multiply connected domain with circular inclusions [19]
and the generalized alternating method of Schwarz [25]. This exact solution can
be considered as the representation of physical fields in the form of the generalized
Poincaré series for the classic Schottky group. The averaging of fields by the ho-
mogenization method [6] gives the effective tensors εe in the form of power series in
the concentration of inclusions f with the coefficients ck depending on the physical
constants and the gravitational centers of the inclusions

εe =
∞∑

k=0

ckf
k. (1)

More precisely, every tensor ck is a linear combination of structural sums with co-
efficients expressed through physical constants. In Section 2, we write the effective
tensor up to O(f3) to demonstrate such a linear combination. The coefficient c2

contains the structural sum e2 used in [18, 27] to study the anisotropy of heat
conduction and e

(1)
3 used in the plane elasticity problems [8].

The present paper is organized in the following way. Section 2 outlines the lower-
order formulas for effective conductivity and Section 3 for elasticity. These formulas
are written in the form of the truncated series (1). The anisotropy terms begin with
the coefficient c2 for circular inclusions. It is expressed by the explicitly constructed
structural sums e2 and e

(1)
3 . The universal relations e2 = π and e

(1)
3 = π

2 hold for
any macroscopically isotropic composite. Random locations of inclusions are gener-
ated, and the corresponding structural sums e2 and e

(1)
3 are calculated. Statistical

analysis demonstrates a lower deviation of e2 from π than a deviation of e
(1)
3 from π

2 .
This implies that elastic composites described by biharmonic functions are more
anisotropically unstable for geometric perturbations than conductive composites
described by harmonic functions.

2. An asymptotic formula for the effective conductivity

The dependence of the effective constants on shapes and locations is clearly seen
in [25] and [24, formula (17)]. We now write an approximate analytical formula for
the effective conductivity tensor (permittivity) εe for two-dimensional two-phase
composites.

Let a composite be represented by a periodicity cell Q formed by two fundamental
translation vectors ω1 and ω2 on the complex plane C

Q =
{

z = t1ω1 + t2ω2 ∈ C : −1
2

< t1, t2 <
1
2

}
. (2)
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Without loss of generality the periods ω1 and ω2 satisfy the conditions ω1 > 0,
Im ω2 > 0. Let the area of Q be normalized to unity. Then ω1Im ω2 = 1. For
definiteness, we consider the hexagonal lattice with

ω1 =
√

2
4
√

3
, ω2 =

√
2

4
√

3
1 + i

√
3

2
. (3)

where i =
√
−1 is the imaginary unit. The considered doubly periodic structure

can be represented by a plane torus denoted by Q.

Figure 1. The periodicity cell Q of disks representing the plane torus. Two white disks on the opposite sides
of Q are identified.

Consider N mutually disjoint simply connected domains Dk with Lyapunov’s
boundaries Lk inQ. Let ak be the center of gravity of Dk. Let D = Q\∪N

k=1(Dk∪Lk)
denote the complement of all the closures of Dk to Q. An example of disks Dk is
shown in Figure 1. Let the conductivity of D be normalized to the unity. Introduce
the piece-wise conductivity function

ε(x) =
{

1, x ∈ D,
ε1, x ∈ Dk (k = 1, 2, . . . , N) (4)

and the dimensionless contrast parameter

% =
ε1 − 1
ε1 + 1

. (5)

The parameter ε1 ≥ 0 represents the steady heat conduction and may be complex
when referring to the dielectric permittivity.

Let a domain Dk be fixed. Introduce the singular integral defined in [31]

Jk =
1
π

∫
Dk

∫
Dk

1
(z − ζ)2

dx1dx2dξ1dξ2 and J =
N∑

k=1

Jk, (6)

where z = x1 + ix2 and ζ = ξ1 + iξ2. One can see that Jk does not depend on the
translation Dk 7→ Dk + w.

The complex static moment of Dk is defined by the formula

sqk =
∫
Dk

(z − ak)qdx1dx2 (q = 0, 1, . . .). (7)
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In particular, s0k = |Dk|, where |Dk| denotes the area of Dk. Let D∗
k denote the

domain Dk rotated about ak on the angle θ in the clockwise direction. Then,
s∗qk = exp(iθq)sqk. This formula corrects the sign in the formula (89) from [25]
and the final formula for the effective tensor. It is convenient to use dimensionless
complex static moments

s
(0)
qk = sqks

− q

2
−1

0k , (8)

for which s
(0)
0k = 1. The integral (6) changes after the rotation as follows

J ∗
k = exp(2iθ)Jk. (9)

Let ℘(z) be the elliptic Weierstrass function constructed by the periods (3) [2]. It
is convenient to use Eisenstein functions related to Weierstrass functions by simple
relations [32]

E2(z) = ℘(z) + S2, Ej(z) =
(−1)j

(j − 1)!
dj−2

j−2
℘(z), j = 2, 3, . . . (10)

In the hexagonal array under consideration, the lattice sum S2 equals π. Define
the values

Ej,km = Ej(ak − am), for am 6= ak, Ej,kk = 0,

(m, k = 1, 2, . . . , N) j = 2, 3, . . .
(11)

Let g2 and g4 be the invariants of ℘(z) [2]. Using ℘′′(z) = 12℘2(z) − g2 and the
relation (10), we get E4,km = 2(E2,km−S2)2− 1

6g2 and E5,km = E3,km(E2,km−S2).
In the case of hexagonal lattice, E4,km = 2(E2,km−π)2 and E5,km = E3,km(E2,km−
π) since g2 = 0.

Introduce the following sums

L =
1
π

N∑
k,m=1

|Dk||Dm|E2,km, (12)

V(1) =
2
π

N∑
k,m=1

|Dk||Dm|E3,mk(s
(0)
1k |Dk|

1
2 − s

(0)
1m|Dm|

1
2 ), (13)

V(2) = 3
π

∑N
k,m=1 |Dk||Dm|E4,mk×(

|Dk|s
(0)
2k + |Dm|s(0)

2m − 2 (|Dk||Dm|)
1
2 s

(0)
1ms

(0)
1k

) (14)
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and

V(3) = 4
π

∑N
k,m=1 |Dk||Dm|E5,mk×[

|Dk|
3
2 s

(0)
3k − |Dm|

3
2 s

(0)
3m + 3

(
|Dk|

1
2 |Dm|s(0)

1k s
(0)
2m − |Dm|

1
2 |Dk|s

(0)
2k s

(0)
1m

)]
.

(15)

Define the value

V = V(1) + V(2) + V(3). (16)

The formula (91) from [25] is slightly corrected here, where the effective tensor
has the form

εe = (1 + 2%f)I + 2%2
∑N

k=1

(
Re Jk − Im Jk

−Im Jk − Re Jk

)

+2%2

(
Re L − Im L
−Im L 2f2 − Re L

)
+ 2%2

(
Re V − Im V
−Im V − Re V

)
+ O(|%|3f4).

(17)

Here, I is the unit matrix. One can check that the orders of the terms J , L, V(1),
V(2), V(3) hold O(f), O(f2), O(f

5
2 ), O(f3) and O(f

7
2 ), respectively. The tensor

εe becomes isotropic up to O(|%|3f4) if Re J = 0, Re L = f2 and Re V = 0.
Macroscopic isotropy also holds for special relations between f , %, J , L and V.

Consider the case of the same inclusions Dk when |Dk| = N−1f , s
(0)
jk := s

(0)
j

(k = 1, 2, . . . , N)

εe = (1 + 2%f)I + 2%2
∑N

k=1

(
Re Jk − Im Jk

−Im Jk − Re Jk

)

+2%2f2

π

∑N
k,m=1

(
Re E2,km − Im E2,km

−Im E2,km − Re E2,km

)

+2%2f3

π [s(0)
2 − (s(0)

1 )2]
∑N

k,m=1

(
Re E4,km − Im E4,km

−Im E4,km − Re E4,km

)
+ O(f3|%|3).

(18)

Rotate the inclusion Dk by the angle θk. Let the angles θk be uniformly distributed
on the segment (0, 2π). Then the J -terms in (18) vanishes.

Consider the case when Dk are equal disks with a radius r. Then, (18) for the
hexagonal cell Q can be written in the form

εe = 1+%f
1−%f I + 2%2f2

π

∑N
k,m=1

(
Re ℘km − Im ℘km

−Im ℘km − Re ℘km

)
+ O(f3|%|3), (19)

where

℘km := ℘(ak − am), for am 6= ak, ℘kk := 0, (m, k = 1, 2, . . . , N). (20)

The first term in (19) is the famous Clausius-Mossotti approximation. The L-term
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(12) becomes L = f2

π e2, where the structural sum is introduced

e2 =
1

N2

N∑
k,m=1

E2,km ≡ π +
1

N2

N∑
k,m=1

℘km. (21)

The structural sums, including e2 and their relations to macroscopic anisotropy,
were discussed in [20, 27]. A set of relations on the structural sums for macroscop-
ically isotropic composites was established. In particular, the isotropy up to O(f3)
is maintained when e2 = π.

3. Structural sums for elasticity

We now proceed to consider the plane elastic problem for the same set of disks
Dk shown in Figure 1. Let the domains D and Dk (k = 1, 2, · · · , n) be occupied
by elastic materials with the shear moduli and Poisson’s ratios µ, ν and µk, νk,
respectively.

Following [8] introduce the elastic contrast parameters using Muskhelishvili’s
constant κ = 3−ν

1+ν

%1 =
µ1

µ − 1
µ1

µ + κ1
, %2 =

κµ1

µ − κ1

κµ1

µ + 1
, %3 =

µ1

µ − 1

κµ1

µ + 1
(22)

related by the identity

%1 =
%3

1− %2 + %3
. (23)

The denominator of (23) is equal to the value
µ1
µ

+κ1
µ1
µ

κ+1
, which is always positive.

Following [8, Appendix A.3] introduce the Eisenstein-Natanzon-Filshtinsky func-
tion by the elliptic Weierstrass functions

E
(1)
3 (z) = −1

2
z℘′(z) +

1
6π

℘′′(z) +
1
2π

ζ(z)℘′(z) + S
(1)
3 , (24)

where the lattice sum S
(1)
3 = π

2 for the considered hexagonal cell Q.
The effective shear modulus for macroscopically isotropic 2D elastic composites

with equal circular inclusions can be calculated by [8, formula (4.21)]

µe

µ
=

1 + Re A

1− κRe A
, (25)

where the parameter A is expanded into the power concentration series

A =
∞∑

s=1

A(s)fk. (26)
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The first few coefficients were explicitly written in [8]. In particular,

A(1) = %3, A(2) = −2%2
3

π
e
(1)
3 , (27)

where

e
(1)
3 =

1
N2

N∑
k,m=1

E
(1)
3 (ak − am). (28)

Similar to the sum (21) it is assumed that E
(1)
3 (ak − am) := 0 if ak = am. The

coefficients (28) depend on the contrast parameter %3. The next coefficients A(s)

were calculated in symbolic form in [8]. They depend on all the contrast parameters
for s ≥ 2.

Remark 1 : The structural sums e2 and e
(1)
3 arise from the conditionally con-

vergent Eisenstein series. This necessitates a meticulous approach to utilizing the
sums based on asymptotic analysis and homogenization theory. Specifically, the
local stress fields and the effective constants can be derived using various formulas
that require different summation methods, resulting in either e2 = π and e

(1)
3 = π

2

or e2 = π = e
(1)
3 = 0. We refer to [22, 23] for a detailed explanation of this nuanced

issue.

4. Computation of structural sums

a) b)
Figure 2. a) Hexagonal array of disks; b) perturbed hexagonal array.

It follows from the previous sections that macroscopic anisotropy can be char-
acterized up to O(f3) by the structural sums e2 and e

(1)
3 . The present section is

devoted to computer simulations of these structural sums for dispersed random
composites. The calculations were carried out in the Wolfram Mathematicar

environment.
First, the following regular lattice shown in Figure 2a is built

Qreg =
{

1
11

(mω1 + nω2) : m,n = 0,±1, . . . ,±5
}

(29)
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Next, random deviations of this lattice are constructed, as an example shown in
Figure 2b

Qrandom =
{

1
11

(mω1 + nω2 + rn,m exp[iθn,m]) : m,n = 0,±1, . . . ,±5
}

. (30)

Here, rn,m and θn,m denote the realizations of random variables R and Θ uniformly
distributed on the intervals (0, ε) and (0, 2π). The structural sums e2 and e

(1)
3 were

calculated for a set of points, i.e., for a set of 121 points displayed in Figure 2b,
two complex numbers e2 and e

(1)
3 were calculated.

The simulations were performed for ε = 0.2, 0.3, 0.4. The values e2 and e
(1)
3

were calculated for the generated random coordinates by the formulas (21), (28).
This procedure was repeated 100 times. The means m2 and m

(1)
3 , the standard

deviations σ2 and σ
(1)
3 for e2 and e

(1)
3 , respectively, are presented in Figure 3.

The obtained results demonstrate that the values e2 and e
(1)
3 are distributed near

the complex numbers π+i0 and π
2 +i0, respectively. The standard deviation of e

(1)
3 is

significantly higher than the standard deviation of e2 for the same sets of disks. This
observation justifies that elastic composites described by biharmonic functions are
more isotropically unstable for geometric perturbations than conductive composites
described by harmonic functions.

This conclusion is important in the theory of composites and in applied optimal
design problems. A three-dimensional extension of the structural sums can be found
in [21]. This implies that the method of structural sums can be extended to some
general problem of solid and fluid mechanics [13, 29].

It is worth noting that the popular pure numerical methods, e.g., FEM, are
limited to a small number of inclusions and insufficient numbers of numerical ex-
periments. If one has 1-3 points in a square of Figure 3 instead of 100, the proper
statistical investigations are impossible. Moreover, the physical constants, e.g., the
shear moduli and Poisson’s ratios, are fixed in the pure numerical methods. This
requires an additional number of computations for various parameters.

Contrary to FEM, an ordinary laptop performed our computations in minutes.
This stresses the computational effectiveness of the method of structural sums used
in the present paper.
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a) m2 = 3.13919− 0.00215452i,
σ2 = 0.0219497.

b) m
(1)
3 = 1.56209 + 0.0266836i,

σ
(1)
3 = 0.431571.

c) m2 = 3.13555− 0.00593185i,
σ2 = 0.0571089.

d) m
(1)
3 = 1.58702 + 0.0637787i,

σ
(1)
3 = 0.811416.

e) m2 = 3.13011− 0.0116036i,
σ2 = 0.127583.

f) m
(1)
3 = 1.64848 + 0.146873i,

σ
(1)
3 = 1.57343.

Figure 3. The results of computation of structural sums in the form of 100 points per a square:
e2 in the left column (a), (c), (e); e

(1)
3 in the right column (b), (d), (f). The parameter ε = 0.2

(first line (a), (b)), ε = 0.3 (second line (c), (d)), ε = 0.4 (third line (e), (f)). The mean
values and the standard deviations are written.
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