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As is well known, Taberski has investigated (C,1) summability issue for general Dirichlet’s
integrals, and proved theorem about sufficient conditions for the uniform convergence of (C, 1)
means of the general Dirichlet’s integrals. We have generalised this theorem to (C,a) (0 <
a < 1) means. For this, it was needed to represent Dirichlet’s kernel in a convenient form.

In this paper the form of representation of (C, «) kernels is also obtained, that allows you
to use second mean value theorem, while integration on the finite intervals. On the other
hand, that makes it possible to think about generalisation of theorems on (C,1) means, to
(C, o) means.
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1. Introduction

The purpose of the paper represents to improve results on the convergence of
the general Dirichlet integrals, obtained previously. As we know, in 1973 Roman
Taberski [1] published a paper on the sumability of some trigonometric sums, (see,
also, [2]). In this paper he had proved the theorem on the uniform convergence of
(C, 1) means of the general Dirichlet integrals. Similar theorems for (C, «) means
(0 < a < 1) have not previously been investigated. Our goal is exactly to consider
this issue. In particular, in the given paper the theorems on sufficient conditions for
uniform convergence of (C, «) means of general Dirichlet’s integrals are established
and proved.
At the beginning, we need some definition.

Definition 1.1: Let, E be a class of functions f(¢) that are Lebesgue integrable
on every finite interval, and

1 TH+c 1 =T
7]l =o. and [ = o)

as T — oo, for all fixed ¢ > 0.
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Suppose, G%(t) denotes (C, a) kernels and 0§ (x) = 0% (z; f) denotes (C, «) means
for S[f] [3]. Then

ZAO‘ D,

HOE % _” e+ 0G0

rile) = fla) = 2 [ otncnar

Before moving to main theorems, we emphasize important equalities and in-
equalities, which will be used in the proof of those theorems, and we will show
their correctness.

Aa:(a+1)(a+2)...(a+n):<a )(

n n!

s (o (2)

For all 7 € N we have

0‘1+1>---(a+1)

n —

N sin(2¢+1)“; 2i+1)5  (2i4+1)-3 1
D;(t)| = < = I sn+ g,
2sin T 2l 27 = 2
because, if
It| <1, smw—t > m
21 l

By the last inequality, for Dirichlet’s (C, «) kernels we have

)G ‘ 1 1 2Ag+% ' 1
N (2 sin QZ)Q—H Ag Ag (2 sin 2l)2

—a—1
- B, (n—at—<a+1>za+1 + n_lt_zlz) < 2B, h™ G) ,

where B, is constant only depending on «,
f2>land0<a<1
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Also, on [4,[] interval we have another inequality

—a—1 a+1 a
max‘Gi;a(t)‘ < 2Byn"° <5> :M.L:Ca (l> L

6<t<l l gatl no

Let’s prove correctness of the following inequality. Before that, we have to em-
phasize, the symbol § represents an imaginary part of a complex number.

7{ i(n+2)t 1 Aa_le—i(n—l—l)t i T e —i(v+1)t
Ax(2sin ) [ (1—e®"° ntl it = vl ] it

isin[(n—i—%—k%a) — ] N a n 20a(1 — )
Aa (2sin £)**! (n+1)(sin)®  (n+1)(n+2) (2sing)’®

If we take out e > as a multiplier from denominator, it is easy to see
-t
2

j{ e "2 AZ‘J& o« 1
2sind (1 —e7i) A n+1 (2sin%)27

and
fet ”
et (n+1)t+7% —zt Z —zt 7{ Z —nt+7% Z —zt
k=m
n m _itn ;
_ fe i((m—n)t+7 Z _us y{e(—“m—n)tﬂ) e iy sms(izt—m +1)5
k=0 2
: ¢
= feillmayrs) sinfn = m +1)5
sin 5
sin((2 —m)t—3%)sin(n—m+1)%
= .t = Sm,n(t)
sin 5
By the Abel’s transform for partial sums we have
IR (1)t ga—2 3 9
v o (0%
7{ 1 — e it Z e Av+1 - 2 Z SnJrlv v+2 + SnJer( )Am+1 s
v=n+1 Sln v=n+1
where —1 < a < 1, m > n. Besides,
Av2 sin ((2 —m)t—Z)sin(n —m+ 1)L
lim Sm n+l1 (t) m+1 = lim ((2 ) Z)t ( )2
m—e0 Ag m—00 sin &
(m+1) .F(a—i—l)_o
n® Ia—1)
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At the same time

m—1 m—1 +
- Z A3+§) < Z sin §Sn+1 v Af}+§’ < Z Av+2
v=n+1 v=n+1 v=n+1
m+1 m+1 m+1
ZAO‘3<Zsm Sn+1,v—2(t Ao‘?’<§:AO‘3
v=n+3 v=n+3 v=n+3
m—+1 ¢
(A ATD S D s g Sun 04T < (A - ALD).
v=n+3
Correspondingly, there exists 6, |#| < 1 such that
m—+1 ¢ 9
Z sin oSy 10-2(8) A5 0 = — (An 3 — A073)
2 sin s
v=n+3 2
If we take a limit as m — oo in an equality (1), we will get
> 0
D Snirea(t)AyT = F AN
B sin 2
If we take into account that
An-‘r? — (Oé — 1)a
A2 (n+1)(n+2)
we will have
z o0 i(v+1)t 2(a — 1
7{ A2 (2 > ANt - ol TE
sin 5 ) ——l € (n+1)(n+2) (2sin )
Let ”Tt :=t, then
0 v t1) 5 20(a — 1
7{ A (2 > A = o= o e =1
sin 57 ) it 1—e (n+1)(n+2)(251n2l)
Taking into account that
1 1 el(%_%)

(1—e ) gmig+isy (281n ;) (QSiH%)a
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we will get
il e elEbr i)
%W(l—e’) = 1, o
o sin 5t 2A% sin 5t (2 sin 5)
isin [(n + % + %oz) t— %wa]
Ag (2 sin %t)a—H

that ends the proof.
Therefore, if we denote th =1t we get

+2)=t 1 efi(nJrl)"—" e~ i(v+1) 7
_ . Aa—l AX— 17t
% A (2sin g L — e T vznzﬂ R i
_isin[(n—{— + 1a) ot — 22] a N 20a(1 — «)
AR (2sin ZF )QH (n+1) (sin %)2 (n+1)(n+2) (2sin % )3
Later we will show that
Gi(t) =
ei(nt3)t 1 . e—i(n+1)t o0 72 e—i(v+1)t
%{Aa (2sinst) |(1—e ) AT - 2 AT | @
" 2 v=n+1

Before this, lets prove

eilnt3)t ™

1 - —_— .
Gt = —— Aa_l Z(V+§)t — f Aa—l —ivt
n() 2A%sinétfyzzo neve 2Agsin;t;) v
i(n+i)t
e 2
— - 1— —zt Aa 1 —wt
7{{214% sin 5t ( Z ]}

v=n+1
1 sin[(n+i+Lia)t—Llra 20
= Za : .y 2+1 el (o< ),
n (2 sin 515) n (2 sin Et)

the last equality of the sequences of equalities.
As is well known, Abel’s transform formula for partial sums is the following
equation

N N-1

N
Z akbk = Z Ak(bk - bk+1) + Anbn Ak = Z a;.

k=m k=m i=m
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By the partial sum formula for the geometric progression, we get

N —i(N—m+1)t _ |

Z (e—zt) — e—zmt kzo (e—zt) — e—zmt — 7

k=m

_jwemy,sin(N —m+ 1)t _ emesin(N —m + 1)t
2 =€ 2 .
sin% sin%

— 6—zmt6

And the by Abel’s transform, we have

N 1 = v sin(V —n)% 9
i(n+1)t § : a—1_—ivt 2 : —i(V—n) o—

V=n+l V=n+1 2
. t
+€—i(N—n)% . blH(N - ’I’L)§ . Ae-1
sin% N
= sin(V —n)§ -sin(V —n)t  , sin*’(n—N)§
B Z sin & AV+1 a sin? £ Ay 3)
V=n+1 2 2
At the same time,
N-1 N-1 . N-1
-2 . 2 -2 —2
— Z AV < sin (V—n)§A‘€‘/+1 < AT
V=n+1 V=n+1 V=n+l
Besides, if we take into account that
N N
S A= X At ayt - anl
V=n+1 V=n+2
we will have
N-1 .
—1 -1 -2 -2 -1 -1
— (AT =A%) < ) sin (V=) AV < (A —ATT)
V=n+1
Correspondingly, 36, |6| < 1 such that
N-1 .
. 2 -2 —1 -1
D sin(V - n)g AV =0 (AT =A%), (4)
V=n+1

If we take a limit as N — oo in equality (3), and take into account equality (4) we
will get

i(n+1)t o~ qa—1 iVt 2-0 a—1
e 2 Z Ay e =-——— A1

2-sin =
V=n+1 2
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At the same time,

Ao
A2 n+1
Therefore,
. 1 % in+31 Z Aa 1 —1Vt 20 )
A%ZSin% el (n+1) (QSin%)2

When N — oo, by the boundness of sin?(n — N)% and A?‘Vfl — 0, the last term of
equality (3) tends to 0. Therefore, we have gotten the desired equality.
Completely by the same way we will get

i(n+3)=t

€ 271 1 —jurt

Gh(t) = PArsn 1T E:AO‘“”JF 7{ 2 AgT e
2A% sin 57 2A% sin 57

ei(n-i-g)ﬂT 1 BTN > Aa—l izt
_f 2A% sin £t (—e ) B ; v €

_ Lenflntatgo) ¥ ogma] | M gy

Ag (2 sin %”Tt)aﬂ n (2 sin

Now, we move on proving correctness of the equality (2). By the equivalent for-
mulation of the Abel transform (where counting index of partial sums begins from
one), we have

m m—1 —imt
) ) ) (e —1
§ :e—wt —_ e—zt § : e—wt — e—zt( - )
1 : e~ —1
v= V=
m —imt
Z Aafl —ivt Aaflefzt (6 1)
v T tm e—it _ 1
v=n+1
—int m—1 —tvt
Aa—le—zt (6 1) _ (Aa—l _ Aa—l) —it (6 1)
n+1 —it _ 1 v+1 v e—it _ 1
v=n-+1
—i(m~+1)t —it —i(n+1)t
_ Aafle ( : . Aafl € . Aa—le ( :
Mmoo —it ] m it _ 1 ntl o—it _

—it m—1 —i(v+1)t m—1 —it
a—1_€ a—2€ a—2 €
+An+1 —it _ 1 o 2: AU+1 —it _ + Z AU+1 et — ]

v=n-+1 v=n-+1
o1 efz(erl)t e*l(nJrl)t m—1 o 671(v+1)t
- Am e—it — 1 ntl o—it _ q Av+1 e—it _ 1
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—at —at m —at
_ pa—1 € a-1_° § : a—2_ ¢
+ < Am e—it _ 1 + An—l—l e—it _ 1 + AU e—it _ 1]

Taking into account the formula

n+1
a—1 __ a—2
An+1 - § Av )
v=0
we will get
m i(m+1)t —i(n+1)t m—1 —i(v+1)t
§ : Aafl —ivt Aafle ( ) . Aa—le ( : . § : Aa—26 ( :
v mo it _ ] n+l o—it _ | v+l o—it _ 1"
v=n+1 v=n+1

If we take a limit as m — oo in the last equality and take into account, that

—i(m+1)t
a—1€
A = — 0,
we get
o0 i(n+1)t 0 —i(v+1)t
Z Ao—1,—ivt o1 (1) Z po—28 (w+1)
v - ntl o—it _ q v+l o—it _ 1
v=n+1 v=n-+1

And then equality (2) is proved. If we replace t with =t we will get
Gl () =
eiln+3) %
% A% (2sin 37)

By repeatedly using Abel’s transform, we are able to get more and more precise
approximation for (C, «) kernels (refers to the equality (2)).

1 e e—i(nt1)t - i Aa_2efi(v+1)”7t
(T—emy e

v=n+1

2. Main results

In this section we will establish and prove two main theorems of an article, on
the uniform convergence to some function of (C,«) means of the general Dirichlet
integrals.

Later we will need to rate difference between the Cesaro means of an « degree
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and function g(x). We have (see [2])

1 l—x
oy (x) — g(2) / (f(x+0) + fla — ) — 2g(2)) G (t)dt

N 27[ —l4z
1 —l+z
by | U - g@)ciewa
l+x
b [ 1) — oGt = 10 (@) + UL (@) + VEo(a).
l—x
Besides,
1 l—x
@ = [ a0+ ra =0 - 2@k

l l
|- )(f(w+t>+f(x—t>—2g(w))G5;“(t)dt=Jk“(w)—Rf;”(w)-

0 l—x

Suppose, |g(z)| <k, z € [a,b], then

re@| <3 ([ e oiceoa s [ e - ol o

—X

l l
vloo) [ jetelar) = o ([ 1ste+olar

20 sin =L %)
l 1 1 I+
l—x 28in —5— l
1 —l+2z e (b —
+/ £ (1)ldt + (a)> =0,
! —l+z !

as | — oo, by f € E.
By the same reason,

v <t (3 s 20=0) =

=~ . — )
21 sin Tx 1

uniformly on [a, b], as | — 0.
Similarly, we get

Vie(z) =0

uniformly on [a, b], as | — co.
Now we will establish and prove lemmas that help us to prove the main theorems.
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Lemma 2.1: Suppose, that a function f is integrable on every finite interval and

/ |f(lt)|<oo7 0<a<l, (5)

=1 [t

then
l

1
lim 7/ f(z £ t)GL(t)dt = 0,
—>0

for all fixed 6 <1, as l,n — oo, % — 0, uniformly in x € [a,b].

Proof: Condition (5) implies that 3A > max{|a| + 1,|b| + 1,d} such that

b—A 0
0, e
(/_oo +/A+a> ot <y

Thus, we will have,

! L
‘;/Af(xit)(;f{a(t)dt‘ < l/ If(z£8)| | GLe, (¢) | dt

|f(x+t)]
S< > / ‘t‘aJrl 2

Besides,

1A . N e l e \*
Z o < — — if — 1 X
‘l/é fx+t) Gy, (t)dt’ < Cq <n> <35 lfn <m1n{5,<2ca> }

Correspondingly, if % setisfies the last condition, then for all € > 0

l
'}/ f(xit)Gga(t)dt’q.
é

O

Lemma 2.2: Let f(t) fg) has
a bounded variation on some intervals (—oo, H|, [H,+00) (H > 0), then for all
real a < b, 6 >0 and 0 < a < 1, we have

hm / f(z £ t)Ghe(t)dt = 0,

uniformly on [a,b].

Proof: By the Jordan’s theorem every function of bounded variation can be pre-
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sented as the difference of two nonnegative and nonincreasing functions. Hence

ff? — fi(t) = falt), t € [H,+00)

where f1, fo are nonnegative and nonincreasing functions. Thus

/‘MHGM t)dt = /f (2 + £)2GL2 (t)dt
l
- }/A (File+1) = fole + 1) (@ + 0G0t

where A > §, a+ A > H. By the second mean value theorem, we get

;/Alfj(ﬂﬁﬂ)(ut)?aff(t)dt: fi@ A }/é(xﬂ)zGi;a(t)dt

A
l
—fj(x+A)-}/ (22 + 22t + %) GL2(¢)dt,
A
where
: l a it fixe’
Giia(t):;a'sm((n—i' + )M1 ), 29at2’ .
n (2 sin 2l) (2 sin gl)

Also, we have

1/lGl°‘(t)dt < My(a,n) (L BRI A TS PYS
J— b — — H
I )s " = A% n n\l § @ ’

as l,n — oo, %—>0.
Furthermore,

1 [ Jo b1 [-20a (1
| iGhedt < ———— | —dt —dt
RGO Py X

n-4

12
as ;= — 0, and

1, 1> ! I 20a [
S 2oty < —— e 2222 [ 1eat
o] < e [

Fa+1) [1\* 1 9o 9o, [ b

n

asln—>ooandn—a—>()
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Similarly, the correctness of the lemma in the case of f(z — t) will be proved, if
we replace in the previous transformations f(x +t) by f(z —t).
The convergence to 0 of a term

A
i | ferncioa

can be proved by the same way as in the case of lemma 1. O

Theorem 2.3: If conditions given in lemma 1 are setisfied, f € E, 0 < a < 1,
and

1 h
Jim /0 @+t + fa— ) — 2g()|dt = 0, ¥z € [a,] (6)

then

0% () = g(x)

on [a,b], as l,n — oo, %—>0.

Proof: Taking into account the results that hade been obtained before lemma 1,

it is easy to see, that to prove the theorem it is enough to estimate J,l{a (x).
We have

l
Tie@) = [ e+ 0+ 1 =) = 29(@) Gt

(/ / /) (Flz+1) + flz = 1) = 29()) G (t)at

— Al (o) + B (a) + O (@)
Let’s assume
o(t) == flz+ 1) + flz—1) —29(x),
0= [ et
By the condition (6), Ve > 0, 3§ > 0 such that for 0 < ¢t < § we have
At) <e-t.

Thus

}/ ‘Gﬁ;“(t)‘ dA(t)

0

2
< Ly <l> < 2e.
l n
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Besides,

o (8 e[ G v (e ()] <

Now, for the estimation of C;*(z), we use the second mean value theorem and
we get

o)1 [ oo

1

1 (! (sin((n+142)mt 7o 90
g(x)l/()( (( 2 22)(i+1 2)+ e 2>dt|

A% (2sin 5t n (2sin 3})

. 1 a\ T
e L1 [Pt Usn(nd 45T -,
l (25111”—6)0‘Jrl ne
21
11 L 20 AN
rgla)- T [ R <an) (5) g
Loy (2sing—?) d t? "

l 1 1 l
+g(z)] -(+>-290¢H0, as [,n — oo and — — 0.

n ) n

Thus, we have che (z) < e. Hence, the theorem is proved.
O

Theorem 2.4: Let the conditions given in lemma 2 be satisfied. Besides, let
0<a<l,

h
Jim /0 @t t)+ fle— 1) — 29(@)|dt = 0, Vo € [a,b), (7)
and f € E, then

ol (z) = g(z)

2
on [a,b], as l,n — oo, é— — 0.

o

Proof: The proof is analogous to the previous theorem, if we take into account
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that é—i -0 = % — 0. The only difference is that, estimation of the corre-

sponding integral on [, ] interval happens by lemma 2, instead of lemma 1. O
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