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 The present paper is devoted to investigation of initial-boundary value problems correspon-
ding to nonlcassical dynamical linear three-dimensional models of thermoelastic bodies in 
corresponding spaces of vector-valued distributions. We consider Lord-Shulman, Green-Lindsay 
and Chandrasekharaiah-Tzou linear three-dimensional models for anisotropic inhomogeneous 
thermoelastic bodies, which were constructed to eliminate shortcomings of the classical 
thermoelasticity, such as infinite velocity of thermoelastic disturbances that is inconsistent with the 
real physical properties of elastic bodies, unsatisfactory thermoelastic response of a solid to short 
laser pulses, and poor description of thermoelastic behavior at low temperatures.  
 In Lord-Shulman [9] model instead of the classical Fourier law of heat conduction Maxwell-
Cattaneo law was used, which is a generalization of Fourier law and depend on one relaxation time 
parameter. Hence, the equation corresponding to the temperature field involve second order 
derivatives of temperature and divergence of displacement vector-function with respect to the time 
variable. The problem of propagation of a thermoelastic wave was studied and domain of influence 
result for Lord-Shulman model in spaces of classical smooth enough functions was obtained in [8], 
and problems of steady oscillations and pseudo-oscillations were investigated in [1] applying 
methods of the theory of integral equations.  
 Different approach was used by A. Green and K. Lindsay [6] to obtain nonclassical model 
for thermoelastic bodies, which is characterized by a system of partial differential equations where, 
in comparison to the classical linear system of thermoelasticity, the constitutive relations for the 
stress tensor and the entropy are generalized by introducing two different relaxation times. For 
Green-Lindsay nonclassical model the problem of propagation of a thermoelastic wave was studied 
and domain of influence result was obtained in [2] in classical spaces of twice continuously 
differentiable functions. In the case of infinite and semi-infinite bodies initial-boundary value 
problems corresponding to Green-Lindsay model were investigated in [5, 7]. Applying method of 
potential and theory of integral equations the problems of stable and pseudo oscillations for Green-
Lindsay nonclassical model were studied in [1].  
 Further, Tzou [12] proposed a dual-phase-lag heat conduction model, where the phase-lag 
corresponding to temperature gradient is caused by microstructural interactions such as phonon 
scattering or phonon-electron interactions, while the second phase-lag is interpreted as the relaxation 
time due to fast-transient effects of thermal inertia. Applying Tzou's model Chandrasekharaiah [3] 
constructed nonclassical model for thermoelastic bodies, where the classical Fourier's law of heat 
conduction was replaced with its generalization proposed by Tzou. In this model the equation 
describing the temperature field involves the third order derivative with respect to the time variable 
of the temperature and divergence of the third order derivative with respect to the time variable of 
the displacement. Note that the Chandrasekharaiah-Tzou model is an extension of the Lord-Shulman 
nonclassical model for thermoelastic bodies. Spatial behavior of solutions of the dual-phase-lag heat 
conduction equation and problems of stability of dual-phase-lag heat conduction models have been 
investigated and particular one-dimensional initial-boundary value problems have been analysed in 
the Chandrasekharaiah-Tzou theory [4,10,11]. 
 We consider variation formulations of initial-boundary value problems in differential form 
corresponding to Lord-Shulman, Green-Lindsay and Chandrasekharaiah-Tzou dynamical noncla-
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ssical three-dimensional models and show their equivalence in the spaces of smooth enough 
functions. On basis of variation formulation we define spaces of vector-valued distributions in 
which the initial-boundary value problems corresponding to Lord-Shulman, Green-Lindsay and 
Chandrasekharaiah-Tzou models are well-posed, and applying suitable a priori estimates we prove 
the existence and uniqueness of solutions of the three-dimensional initial-boundary value problems. 
In addition, we obtain energetic identities, which permits one to prove continuous dependence of 
solutions on initial and boundary conditions and densities of body forces and heat sources. 
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