SHORT COMMUNICATIONS

Set-theoretical Aspects of Absolute Nonmeasurability of the Union of Two Uniform Subsets of the Euclidean Plane

Alexander Kharazishvili*

A. Razmadze Mathematical Institute, 2 Merab Aleksidze II Lane, 0193, Tbilisi, Georgia

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University

11 University St., 0186, Tbilisi, Georgia

(Received December 15, 2023; Revised September 30, 2024; Accepted October 10, 2024)

It is shown that the Continuum Hypothesis is equivalent to the existence of two uniform subsets X and Y of the plane \mathbf{R}^2 such that $X \cup Y$ is an absolutely nonmeasurable set with respect to the class of all nonzero σ -finite translation invariant (quasi-invariant) measures on \mathbf{R}^2 .

Keywords: Uniform set, absolutely nonmeasurable set, continuum hypothesis, Banach theorem.

AMS Subject Classification: 28A05, 28D05.

Let E be a ground set equipped with a group G of transformations of E.

We say that a subset X of E is G-absolutely nonmeasurable in E if, for any nonzero σ -finite G-quasi-invariant measure μ on E, the relation $X \notin \text{dom}(\mu)$ holds true (see [4], [5], [6]).

We say that a subset Y of E is G-negligible in E (see again [4], [5], [6]) if the following two conditions are satisfied:

(*) there exists at least one nonzero σ -finite *G*-quasi-invariant measure ν on *E* such that $Y \in \text{dom}(\nu)$;

(**) for every σ -finite *G*-quasi-invariant measure μ on *E*, the relation $Y \in \text{dom}(\mu)$ implies the relation $\mu(Y) = 0$.

It was proved that under some natural assumptions on the space (E, G), the union of two *G*-negligible sets can be a *G*-absolutely nonmeasurable set (cf. [4], [6]).

Let us consider a more concrete situation when E is the Euclidean plane \mathbb{R}^2 and G is an uncountable subgroup of the group of all translations of \mathbb{R}^2 . In this case we have a natural class of G-negligible subsets of \mathbb{R}^2 .

To describe this class, take a nonzero vector z in \mathbb{R}^2 .

A subset Z of \mathbf{R}^2 is called uniform in direction z if, for any straight line $l \subset \mathbf{R}^2$ parallel to z, the set $l \cap Z$ is either empty or singleton (cf. [8], [9]).

^{*} Corresponding author. Email: kharaz2@yahoo.com

A subset U of \mathbb{R}^2 will be called uniform (in \mathbb{R}^2) if there exists a nonzero vector $z \in \mathbb{R}^2$ such that U turns out to be uniform in direction z.

Example 1: It is not hard to verify that a uniform in direction z subset of \mathbf{R}^2 is G-negligible, where G is any uncountable subgroup of the one-dimensional group $\mathbf{R}z$. Taking z = (0, 1), one can see that a set $Z \subset \mathbf{R}^2$ is uniform in direction z if and only if Z coincides with the graph of some partial function acting from \mathbf{R} into itself.

Example 2: According to the profound result of Davies (see [1], [2]), there exists a uniform subset U of \mathbf{R}^2 such that $\cup \{g_i(U) : i \in I\} = \mathbf{R}^2$ for some countable family $\{g_i : i \in I\} \subset Is_2$, where Is_2 denotes the group of all isometries (motions) of \mathbf{R}^2 . In particular, the set U is Is_2 -absolutely nonmeasurable.

The main goal of this short note is to demonstrate that the existence of two uniform sets U_1 and U_2 in \mathbf{R}^2 such that $U_1 \cup U_2$ is \mathbf{R}^2 -absolutely nonmeasurable is equivalent to the Continuum Hypothesis (**CH**).

Lemma 1 : If a subset X of (E, G) is G-absolutely nonmeasurable, then there exists a countable family $\{g_i : i \in I\}$ of elements of G such that $\cup \{g_i(X) : i \in I\} = E$.

Using Sierpiński's classical result (see, e.g., [8], [9]), we get the following statement.

Lemma 2: If, for some two uniform subsets U_1 and U_2 of \mathbb{R}^2 , there exists a countable family $\{h_i : i \in I\}$ of translations of \mathbb{R}^2 such that

$$\cup \{h_i + (U_1 \cup U_2) : i \in I\} = \mathbf{R}^2$$

then the Continuum Hypothesis holds true.

Taking into account Lemmas 1 and 2, we obtain

Theorem 1: If there exist two uniform subsets U_1 and U_2 of \mathbb{R}^2 such that $U_1 \cup U_2$ is an \mathbb{R}^2 -absolutely nonmeasurable set in \mathbb{R}^2 , then the Continuum Hypothesis is valid.

Lemma 3: Suppose that the Continuum Hypothesis is true.

Then there exist two subsets X and Y of \mathbb{R}^2 satisfying the following three conditions:

(1) the set X is uniform in direction (0,1) and the set Y is uniform in direction (1,0);

(2) for some countable family $\{h_i : i \in I\}$ of translations of \mathbb{R}^2 , the equality

$$\cup \{h_i + (X \cup Y) : i \in I\} = \mathbf{R}^2$$

takes place;

(3) for each point $x \in X$ and for each point $y \in Y$, the distance between x and y is strictly greater than 2.

Lemma 4: Let X and Y be two subsets of \mathbb{R}^2 described in Lemma 3. Then the set $X \cup Y$ is \mathbb{R}^2 -absolutely nonmeasurable in \mathbb{R}^2 .

Proof: Suppose on the contrary that there exists a nonzero σ -finite translation quasi-invariant measure μ on the plane \mathbb{R}^2 such that $X \cup Y$ turns out to be μ -

measurable.

Denote by H the set of all those vectors in \mathbb{R}^2 whose lengths do not exceed 1 and which are parallel to the line $\{0\} \times \mathbb{R}$. Clearly, the cardinality of H is equal to the cardinality continuum. In the sequel, we only need the uncountability of H. Let h_1 and h_2 be any two distinct vectors from H. It is not difficult to verify that

$$(h_1 + (X \cup Y)) \cap (h_2 + (X \cup Y)) = (h_1 + Y) \cap (h_2 + Y)$$

The set $(h_1 + Y) \cap (h_2 + Y)$ is uniform in direction (1,0) and simultaneously is μ -measurable. Therefore,

$$\mu((h_1 + Y) \cap (h_2 + Y)) = 0.$$

So we infer that the uncountable family $\{h + (X \cup Y) : h \in H\}$ of μ -measurable sets is almost disjoint with respect to μ . This circumstance implies that

$$\mu(X \cup Y) = 0.$$

On the other hand, by virtue of condition (2) of Lemma 3, we must have $\mu(X \cup Y) > 0$. The obtained contradiction yields the required result.

Theorem 2: If the Continuum Hypothesis holds true, then there exist two uniform subsets X and Y of \mathbb{R}^2 such that the set $X \cup Y$ is \mathbb{R}^2 -absolutely nonmeasurable in \mathbb{R}^2 .

Remark 1: It can be proved (within **ZFC** theory) that there are two \mathbb{R}^2 -negligible subsets of \mathbb{R}^2 such that their union is \mathbb{R}^2 -absolutely nonmeasurable (in this connection, see [4], [6]).

Remark 2: It should be noticed that non-measurability properties of uniform subsets of the plane \mathbf{R}^2 were considered in several works (see, for instance, [3], [4], [5], [6], [7], [8]). In particular, the nonmeasurability of special uniform sets, with respect to the standard two-dimensional Lebesgue measure on \mathbf{R}^2 , was first demonstrated by Sierpiński (see [8], [9]).

In [4], assuming **CH**, it was shown that the absolute nonmeasurability of the union of certain two uniform subsets of \mathbf{R}^2 is somehow connected with Banach's widely known theorem stating the existence of a finitely additive translation invariant measure which is defined on the ring \mathcal{S} of all bounded sets in \mathbf{R}^2 and which extends the restriction of the two-dimensional Lebesgue measure to \mathcal{S} (see, e.g., [5], [10]). The argument presented in this short communication does not rely on the above-mentioned Banach theorem.

References

- R.O. Davies. Covering the plane with denumerably many curves, J. London Math. Soc., 38 (1963), 433-438
- R.O. Davies. Covering space with denumerably many curves, Bull. London Math. Soc., 6 (1974), 189-190
- [3] B.R. Gelbaum and J. M. H. Olmsted. Counterexamples in Analysis, Holden-Day, San Francisco, 1964

 ^[4] A. Kharazishvili. Some Questions of Set Theory and Measure Theory (Russian), Izd. Tbil. Gos. Univ., Tbilisi, 1978

- [5] A. Kharazishvili. Invariant Extensions of the Lebesgue Measure (Russian), The Publishing House of Tbilisi State University, Tbilisi, 1983

- [6] A. Kharazishvili. Nonmeasurable Sets and Functions, Elsevier, Amsterdam, 2004
 [7] J. C. Oxtoby. Measure and Category, Springer, New York, 1971
 [8] W. Sierpiński. Hypothése du Continu, 2-nd Edition, Chelsea Publ. Co., New York, 1956
 [9] W. Sierpiński. Cardinal and Ordinal Numbers, PWN, Warszawa, 1958
 [10] S. Warsz, The Bargeh Thereir Days der Cherkright Hypothesis (Combridge 1985)
- [10] S. Wagon. The Banach–Tarski Paradox, Cambridge University Press, Cambridge, 1985