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Introduction

The concept of classes of functions of bounded variation was introduced by Jordan
in 1881 [27], and it was applied to pointwise convergence of Fourier series. Later,
this concept was generalized by many authors. For example, Wiener [32], Young

3

3], Chanturia [15], Waterman [31], Avdispahic [5], Belov [11] Kita and Yoneda

[28], Akhobadze [1-3], Berezhnoi [12-14]. The following were studied in these classes:

Pointwise convergence of Fourier series;

Uniform convergence of Fourier series;

Absolute convergence of Fourier series;

Summability of Fourier series;

Rate of the convergence of Fourier series (approximation properties);
Embedding theorems.

The space of functions of bounded variation for functions of two variables was

introduced by Hardy in 1906 [26]. This class has been generalized in the paper
of Golubov [25], Sahakian [29], Dyachenko, Waterman [16], Bakhvalov [7-10] and
Goginava, Sahakian [17-23].
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The classes of bounded oscillation functions and their generalisations to Walsh
and Vilenkin groups G,, were investigated in the following publications [4, 6, 30].

Our goal in the presented work is to introduce CA1A20 (G2,) and CA*O (G2))
classes of continuous oscillation functions on Vilenkin groups G2, := G, X Gp,.
The embedding theorem between classes is used to solve the summability problem
of double Vilenkin-Fourier series.

2. Bounded Vilenkin group

Let N denote the set of positive integers, N := N, U{0}. Let m := (mg, m1,...) de-
note a sequence of positive integers not less than 2. Denote by Z,,, := {0,1,...,mi—
1} the additive group of integers modulo my. Define the group G,, as the com-
plete direct product of the groups Z,,,, with the product of the discrete topolo-
gies of Zy,,’s. The direct product p of the measures pg({j}) == = (j € Zn,)

mg

is the Haar measure on G,, with p(G,,) = 1. If the sequence m is bounded,
then G,, is called a bounded Vilenkin group. The elements of G,, can be rep-
resented by sequences x := (zo,1,...,%;,...), (¥; € Zpy,). The group operation

+ in Gy, is given by = + y = (2o + yo (modmy) , ..., xx + yx (modmy,) , ...) , where

x = (xo, .0, Tk, ...) and ¥y = (Yo, -.es Yy -..) € Gpp. The inverse of + will be de-

noted by —. In this paper we will consider only bounded Vilenkin group. Set

en == (0,...,0,1,0,...) € G,, the nthcoordinate of which is 1 and the rest are

zeros (n € N).If we define the so-called generalized number system based on m in

the following way: My := 1, M1 := mpMp(k € N), then every n € N can be
o0

uniquely expressed as n = Y ¢; (n) M, where €; (n) € Z,, (j € N;) and only a
§=0

finite number of €; (n)’s differ from zero.

Next, we introduce on G, an orthonormal system which is called the Vilenkin
system. At first define the complex valued functions ri(z) : G,,, — C, the general-
ized Rademacher functions in this way

2
ri(z) == exp ( mek) (22 =—1, 2 € Gp, kEN).

Now define the Vilenkin system 1 := (¢, : » € N) on G, as follows:

[e.e]

Yn(z) = [[ri*(z) (nen).

k=0

Specifically, we call this system the Walsh-Paley one if m = 2.
We consider the double system {1y (z) x ¥;(y) : k,1 € N} on G2, := Gy, x Gy,
The two-dimensional Fourier coefficients, the rectangular partial sums of the
Fourier series,the Dirichlet kernels with respect to the two-dimensional Vilenkin
system are defined as follow:

~

Frame) = [ f(2,9)9n, (@) ¥, (v) dp(z,y),

2
G
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ni—1n,—1

Snains (2,9, f Z Z F (k1 ko) e, (2) vk, (3)

=0 ko=
D, n, ($7?/) := Dy, (z) Dn, (y) ,

The (C, —a1, —a2) means of the two-dimensional Vilenkin-Fourier series are de-
fined as

ny N2

0'7:107671172_(}2 (.’L’, Y, f) = Z Z A, allAnz—] (Z ])wz ( )¢j (U) ’

Oél —Q2
Anl An2 i=0 j7=0

3. Generalized continuous oscilation on Vilenkin group

Now let us introduce the concepts of generalized variations on the group G2,. We
assume that,

o
1
L<A <A<, > —=0(s=12).
n
Set
k
Zé ) = (1‘0, ...,:):k,l,O, ) 5
where
k—1 T
B = ( J >Mk(xj€Zm7)
Mj
Jj=
Define
0sCq (f7 Wl(ﬁl +Ik‘17 > = sup ‘f(xay) - f (fﬂl,y) )
w2 €2,y +H by
ko
0SC2 (f,xa Z7(r2()52) + Ik;2> = sSup ’f (xvy) - f (xay,)’
Yy EZ2) Ik,
and

oser2 (£, 2000 + Thus Z4(3)y + T
= sup {f(a:,y) —f(%y’) —f($/,y) + f (xl,y,ﬂ’

(k2) (k1)
YY' €2, ) Tha ' €2, G5 )+ iy

where 7 and my are permutations of the sets {0,1,..,M; —1} and
{0,1, ..., My, — 1}, respectively. For the sequence of positive numbers Al :=
{)\,11 'n € D\I} and A? := {)\% in e D\I} we denote
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M 71 oscy (f, + I, )
A'O1 (f;GZ,) = supsupsup Z 1/61) ,
Y kl m 51:0 )\,61

My =1 gcy (f,x Z( (252) + Ik"’)

A0, (f; an) = supsup sup E 5
T ky T B2=0 Aﬁz
2

and

My, =1 M, — OSCI 2 <f Z + Ik17 Zilzizgz) + IkQ)

ATA%0 ;G = sup s
12 (fiGL) = sup swp 3 o
1 2 b ﬁ O 62 Bl /62

Definition 3.1: Let A® = {A\J}°°, and A} = {A\J}°°,,s = 1,2, k = 1,2,....
We say that the function f is contlnuous in AjAs-oscilation and write f €
CAA20 (GZ), if

Jim A0y (f3GF,) =

Jim AFO, (f3GF,) =

klirgoAkA 01,2 (f;an) =0

and
Jim AMAZO, (f3GR,) =0,
Define
ML osey (f, " +Ik1,y51>
A*O, (f;G2,) = supsup sup )\ﬁf)
ko™ Jys b ogi=o0 B
and

My, —1 0SC9 (f7 LBy, Zgz?)&) + Ik2)

A7 Oy (f; an) = supsup sup 32
B2

ko T2 {z52} ,62:0
Definition 3.2: Let A* = {A\J}7°, and A} = {\)}>°,,s=1,2,k=1,2,.... We
say that the function f is continuous in A#-oscilation and write f € CA#O (an),
if
Jim AFOs (f;G2) =0 (s=1,2).
—00

Throughout the paper, instead of the following inequality a < ¢ - b, the notation
a < b will be used, where the constant ¢ may depend on a1 and as.
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4. Embedding theorem

Theorem 4.1: Let ay, a9 € (0,1) and ay + e < 1. Then
oo (@) o (i) {7 0(6R).

Proof: [Proof of Theorem 4.1] We assume that f € C {ilf(aﬁa?)}# O (G2,) and
must demonstrate that the conditions of definitions 3.1 are satisfied. It is easy to
see that

#
{1 al} o)) (f G2)§{ (a1+a2)} Ol(f;an)—’O (1)
as n — 00. Analogously, we can prove that
{717}, 02 (f:G2,) — 0 (2)

as n — o0o. Now we prove that limy_, s {i1*a1 }k {jI*O‘Z} O1,2 (f; an) = 0. Accord-
ing to the Supremum’s definition, it is sufficient to demonstrate that

1 () ()~ () + £
Jim, Z Z e gl

1=n 2=

where

(e, ¥s) + (w5008.) € (200 + I ) (2550 + 1)

First, consider the case when Mj, > My,. We can write

bl MZ LEORIC ;ﬁ);f@ o) £ 1)

Bi=n  Bz=
Mkz_lﬁl—l Mkz—l MkQ—l Mkl_l Mk2—1

i PIDILDIED NI DY

51:71 ﬁzio 51:71 ﬂ2:51+1 ,@1:Mk2 ﬁzio
‘f (x%“y/@) —f (xgl,y/’%) - f (x’ﬁl,ygg) + f(x5,,Y8,)

1a11a2
1

: = A+ Ay + As.
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We have

Wt 1 AR (k) — S (want)
Z 1*012 1—oo

Bi=n 1 B2=0 2

Mot Bl ‘f(fﬂﬁlayﬁ2) ~f (wblay@)

+ Z 1—on Z l1—ao

Ay

IN

Bi=n "1 B2=0 2
M., — = =
<N 1 ‘f(x,ﬁl’y,ﬂl) _f(ml’y,ﬁlﬂ
~ Z l—ai—ap
ﬁ1=n 1

{00 (£56h) =0

~

as n — 0o, where

\f (@,.75,) — f (6, 75,) | = sup |f(z,08) — f (2,.98)|-

0<B2<B1

Analogously, we have

el ’f (%,y’gz) = [ (@5, 95.)

A2 5 Z l—o1—ao

Ba=n 2

< {0, (£,62) — 0

as n — 0o, where

\f (Tpup,) — f @pyyyp)| = sup | f (2,,95,) — f(25,,98,)] -

0<B1<B2

Using the same approach, we get

My, 1 ‘f (xiﬁlﬁyﬁl) - f (x517yﬂ1) My, 1 1
A3 S Z 1—ay Z 1—as
/81:Mk2 1 B2=0 2
< Mt ‘f (x/ﬁl’yﬁ1) - f (xﬁﬂyﬂl)
~ 1—a—as
Br=My, 1

S {0 (£:62) — 0

as n — 00. Now consider the case when My, < My, and we can write
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bl MZ 1) 21 o ;jf);ff(x SDRZL Y S

Bi=n [o=
Ma 4B f (aly,) = F (w600l ) = F (00m) + f (@608

P S

Bl—n /82 !
B,
o (3 () () () o
DS A |
Bi=n Bo=fr+1 !
B

As above we obtain the following estimates

By S {it 1 0, (£;G2) — 0 (8)
and
By S {i" 7 0, (£:G2) — 0 (9)
as n — 00.
Combining (1)-(9) we complete the proof of Theorem 4.1. O

5. Summability of double Vilenkin-Fourier series

Set

A?f (l',y,ekz) 3:f(l‘,y—€k2) _f(!T,y),
Alf(xvyvekl) = f(SU—Bkl,y) —f(x,y)

and

A12f (x7y7ek17ek2) = f( — €k Y 6k2)—f(l’_€k1,y)—f(-%',y—@cz)—i‘f(flf,y)-

Assume C (G’%n) is the space of continuous functions defined on group G2, with

supreme norm (C-norm). The dyadic partial moduli of continuity of a function
f€C(G%) in the C-norm are defined by

" (f, A;)C —sup I =) = £ (s

uel,

" (f, zé)c —sup IS (o —0) — £ ()l

vel,
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while the dyadic mixed modulus of continuity is defined as follows:

f 1 1
w12 7Mn7 Mm

= sSup Hf('_uv'_v)_f('_uv')_f('v'_v)_'_f('a')HC'

(U,U)Efn ><I7n

Let us now formulate the central theorem.

Theorem 5.1: Let f € C(G2,)NC{i'=*} {i'=*2} O (GZ,) and a1, a3 € (0,1).
Then

lim H Tl1OleL72 @ (f? ) ) - f(7)HC(G$n) =0.

min(ni,ne)—o0

Proof: [Proof of Theorem 5.1] To establish the theorem, just test the validity of
the following three conditions (see [24])

My, —1 My, —
N Do S R O Y IR
lim Mill A2<-,-—Z(k2))‘ =0 (11)
i = " c(Gz,)
and
lim Mifl ! A1<._Z(’ﬁ),.>‘ — 0. (12)
S PR ) c(@z,)

Let {61 (Mg,)}, {02 (My,)} and 65 (Mg, , My, ) be a subsequence of natural numbers
which satisfie the following conditions:

01 (Mg, ), 02 (My,) , 03 (My,, My,) — oo,

o (Fogi ) o ) = (13)
s <f, Mlk)ceg2 (Mg,) = 0 (14)

and

1 1 a1+
w12 (f Mkl ]ka> 9 (Mkkag) — 0. (15)
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as k1, ko — oo. Firstly, let us verify that due to (13) the condition (11) is true. In
a similar manner, using (14) the fairness of condition (12) may be verified

My, —1

> e [ (- 2)
Bo=1 72
QQ(M’CZ) 1 Mi, —1 1
= Z = Ag(acy Z( )>‘—|— Z T Ag(:cy Z( ))‘
po=1 2 Ba=6>(My,) 2

o) o )

as ng — 00. Analogously, we can prove (10) using (15). Indeed, we have

My, —1 My, —

(k1) (k2)
Z Z al—ay Q. al—as —Q2 Al’Z(l‘_Zﬂl ’y_Zﬂz )‘
Bi=1 pa=1 ﬁl ﬁ

0 ( My, My, )—105( My, , My, )—1

1 1
S Z Z 117041 ﬂ%fozz

Avz (o - 25"y - 257)]

Bi=1 B2=1
Mkl_l Mk‘z_l 1 1
k1 ko
t Z Z pl-ar la ‘ALQ(x_Z/él),y_Z/éQ)>‘

pi=1 62=03(Mk1,Mk2) !

My, —1 My, —

D Z e 51 _ ‘Am(x_z(m _Zg:z)ﬂ

Br= 93(Mk1 7Mk2) B2=1

1
0512 (Mg, , M,
{WIZ <f7 M Mk;z) ( k1> k2)

+{i' Ty {Jliaz}eg(Mkl,Mkz) Or2 (f:Gn)
n {il_o” }Qg(Mkl’MkQ) {jl—az} O12 (f; ng)} .

The following is obtained from Theorem 4.1 and Theorem 5.1 O

Theorem 5.2: Let f € C (G2 ) N C{z a1+a2)} 0] (G2 ) and aq, a0 € (0,1),
a1+ ag < 1. Then

lim o (F) = £ Gl o) =0

min(ni,ng)—o00
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