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To the Problem of Turbulent Diffusion Instability
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The paper proposes the statistical model of diffusion instability between particles making
Brownian motion in incompressible medium. The expression of the perturbed concentration
of impurities has been derived on the basis of the stochastic integro-differential equation
containing potential energy between interacting particles using the Picard method. Effective
diffusion coefficient is derived containing both molecular and turbulent diffusion coefficients.
The condition of the negative diffusion instability has been revealed at which impurity cells
can be attracted and repelled depending on the potential energy sign. Effective potential
energy between the interacting spherical liquid elements has been obtained, which can lead
to the instability. The effect of the “Turbulent Diffusion Instability” has been revealed for
the first time. The obtained results are valid for an arbitrary autocorrelation tensor of the
velocity pulsations.

Keywords: Diffusion instability, stochastic integro-differential equation, turbulence,
statistical moments.

AMS Subject Classification: 76F55, 60H15, 60J60.

1. Introduction

Waves propagation in random media has been well investigated [1, 2]. Peculiarities
of the statistical characteristics of scattered electromagnetic waves in the terrestrial
atmosphere and ionosphere have been considered in [3–7]. The features of turbulent
diffusion based on a stochastic equation with random coefficients are investigated in
this paper. This approach is universal, allowing to investigate problems of various
types, different characteristics of the environment and boundary conditions.

The most important and most commonly used theory of turbulent diffusion is
the theory based on the parabolic-type diffusion equation in partial derivatives
for the average concentration of diffusive impurity. Different theoretical ideas of
the turbulent diffusion processes were proposed in [8, 9]. Mass transfer processes
in the atmosphere are realized by molecular and convective turbulent diffusion in
liquid and gases. It was established experimentally that integer groups of molecules
are characterized by mixing lengths and turbulent viscosity participate in mixing
processes of turbulent flows, contrary to the laminar streams. Turbulence favors the
mixing of different impurities in different media. Interaction of impurities leads to
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the temporal evolution of medium inhomogeneous structure. Medium passes to the
metastable state with various developing relaxation processes. Inhomogeneities can
lead both to the velocity pulsation and changing of diffusing processes direction,
to the appearance of local instabilities retaining the other region of the system in
equilibrium state. Under the term “impurities” further we shall imply both particles
and the clusters of molecules.

Stochastic differential equations can be used to describe turbulent diffusion, and
this approach makes it easy to construct a number of generalized and modified
classical theories based on parabolic-type diffusion equations. A new statistical
model of the turbulent diffusion is proposed in this paper, where potential energy
between diffusing impurities plays a key role.

2. Distribution of the passive impurities in a turbulent flow

Let us consider mean concentration distribution of the passive impurities using
the effective medium approximation. Concentration N(r, t) and velocity V(r, t) of
incompressible medium satisfy the equation

∂N

∂t
+

∂

∂xα
(NVα)−D ∆N = S(r, t). (1)

Source of impurity S(r, t) is an arbitrary deterministic function of coordinate and
time, D is the coefficient of the molecular diffusion. Submit functions N and V as a
sum of slowly varying functions and fluctuating terms, which are random functions
of coordinates and time

N(r, t) = N0(r, t) + n(r, t), V(r, t) = V0 + u(r, t), V0 = const.

The set of equations for the mean and fluctuating concentrations (N0 � n) can be
written as

∂N0

∂t
+ V0α

∂N0

∂xα
−D

∂2N0

∂x2
α

= − ∂

∂xα
< nuα > +S(r, t),

∂n

∂t
+ V0α

∂n

∂xα
−D

∂2n

∂x2
α

= − ∂

∂xα
< uαN0 > .

Here α = x, y, z. Taking into account the initial condition n(k, 0) = 0 we have

n(k, t) = ikβ exp[−a(k)t]

t∫
0

dt′ exp[a(k)t′]

∞∫
−∞

dk′uβ(k− k′, t′)N0(k′, t′),

where a(k) = ikαV0α + Dk2.
3D spectral density of the mean concentration of the passive impurity satisfies

the intego-differential equation

∂N0(k, t)
∂t

+ b(k)N0(k, t) = S(k, t), (2)
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where b(k) = ikαV0α + k2Deff(k); effective diffusion coefficient for an arbitrary
autocorrelation tensor of the velocity pulsations Wαβ(ρ, τ) can be written as

Deff(k)

= D +
< u2 >

(2π)3
kαkβ

k2

∞∫
−∞

dk′
∞∫

−∞

dρ

∞∫
0

dτWαβ(ρ, τ) exp[−i(k− k′)ρ− a(k′)τ ].

For solenoidal velocity (kαWαβ(k, t) = kβWαβ(k, t) = 0) using the initial condi-
tions, the solution of equation (2) may be written as

N0(r, t) =

∞∫
−∞

dk exp[ikr− b(k)t]

t∫
0

dt′S(k, t′) exp[b(k)t′].

3. Effective diffusion coefficient

The evolution of the impurity concentration caused by both molecular and turbu-
lent diffusions is carried out on the basis of equation (1) applying the continuity
equation of an incompressible liquid. Using the average field method [1, 2], the set
of equations for the mean and fluctuating terms of impurity concentration in the
first order approximation has the following form

Q(k, ω)N0(k, ω) = ikα

∫
dk′

∞∫
−∞

dω′ < n(k′, ω′)uα(k− k′, ω − ω′) >= S(k, ω),

Q(k, ω)n(k, ω) = −ikβ

∫
dk′

∞∫
−∞

dω′N0(k′, ω′)uβ(k− k′, ω − ω′), (3)

kαuα(k, ω) = 0,

where Q(k, ω) = −i(ω − kV0) + k2D + µ
U0

k2Π(k).

The solution of the set of equations (3) yields the effective diffusion coefficient

Deff(k, ω) = D +
µ

M0
Π(k) +

kαkβ

k2

∫
dk′Wαβ(κ,Ω) ≡ Dmol

eff (k) + Dturb
eff (k, ω), (4)

where κ = k− k′, Ω = ω − (k′V0) + ik′2Dmol
eff (k′).

It contains both molecular and turbulent diffusion coefficients and the potential
energy of interacting impurities. Effective turbulent diffusion coefficient depends on
a characteristic spatial (l) and temporal (T ) scales of medium velocity pulsations, as
well as on the direction of a turbulent flow. This means that a turbulent diffusion
coefficient is anisotropic. Formula (4) is valid for an arbitrary spatial-temporal
second rank correlation tensor Wαβ(κ,Ω) of a turbulent velocity field.
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4. Diffusion instability of interacting particles

Turbulence has been caused by concentration gradient of molecules clusters, con-
vection transfer of inhomogeneities and potential field gradient induced by other
impurities of inhomogeneous medium in a given space point. Conservation condi-
tion of matter, taking the interaction of diffusible particles into account, may be
written as:

∂N(r, t)
∂t

+
∂

∂xα
(NVα)−D

∂2N

∂x2
α

=
µ

U0
∇

{
1 +

∞∑
n=1

1
n!

λn[N (n−1) − 1]∇

} ∞∫
−∞

dr′Π(r− r′)N(r′, t) + S(r, t),

where D and µ are molecular diffusion and mobility, respectively; V is a medium
velocity; U0 is a volume of a unit cell; Π(r − r′) is the potential energy between
two interacting impurities located in r and r′ points. In the absence of interaction
uniform distribution of the particle is stable

lim
t→∞

N(r, t) = const and lim
U0→∞

1
U0

∫
U0

drN(r, t) = const < ∞;

α = x, y, z; S(r, t) is a deterministic function of impurity distribution appearing or
disappearing per unit of volume and per unit of time; λ is an arbitrary constant
parameter and in final results it will be set to one. Using the Picard iteration
method [10] we will seek the solution of equation (1) in a series as a sum of the mean
and fluctuating terms: N(r, t) = N0(r, t) + λn(r, t) + λ2N (2)(r, t) + · · · , N0 � n,
V(r, t) = V0 + u(r, t), V0 = const. The second terms are random functions of the
spatial coordinates and time with zero average mean values. Taking into account
the incompressibility equation ∂uα/∂xα, we obtain

[
−i(ω − kV0) + Dk2

]
n(k, ω) +

µ

U0

∞∫
−∞

dk′
∞∫

−∞

dω′{[k2 − (kk′)]Π(k− k′)

+ (kk′)Π(k)}N0(k′, ω′)n(k− k′, ω − ω′)

= −ikα

∫
dk′

∞∫
−∞

dω′N0(k′, ω′)uα(k− k′, ω − ω′). (5)

For a solenoidal incompressible, stationary velocity field ((kαuα) = 0) and N0 =
const equation (5) reduces to the dispersion equation

ω = (kV0)− ik2

[
D +

µN0

U0
Π(k)

]
.
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In this case perturbation of an impurity concentration at arbitrary moment can be
written as

n(r, t) =

∞∫
−∞

dk n(k) exp
{

ikr− i(kV0)t− ik2

[
D +

µN0

U0
Π(k)

]}
.

If min
k

Π(k) > 0 it is possible to introduce the effective diffusion coefficient D∗ =

D + µN0Π(k)/U0, but at min
k

Π(k) < 0 there exists a limiting value of impurity

concentration:

N0∗ = − DU0

µmin
k

Π(k)

starting from which (N0 > N0∗) negative diffusion instability arises. Generally, U0

and Π(k) are functions of the temperature T0 and, therefore, N0∗ is a nonlinear
function of T0. Without loss of generality, lets consider two clusters of molecu-
lar impurity with increasing (n1) and decreasing (n2) concentration perturbation,
n1 > n2. Coordinate x0 corresponds to the inflection point of the function n(x),
i.e., (∂2n/∂x2)

∣∣
x=0

= 0. This is a boundary between two cells, along which con-
centration perturbation does not change. Critical value of non-excited impurity

Figure 1. Pattern of diffusion instability

concentration N0 is determined by the instability criterion. At N0 > N0∗ the first
cell additionally densifying at the expense of depletion of a second one. In the
region where inequality 0 < x < x0 is fulfilled, the function n(x) is convex up-
ward (∂2n/∂x2) = 0. Impurity concentration must be increased (∂n1/∂t) > 0.
Hence, the diffusion instability appears in the first cell at D∗ < 0. In the re-
gion where the condition x0 < x < x1 is satisfied, the function n(x) is convex
downwards (∂2n/∂x2) > 0. According to the condition of instability the inequality
(∂n2/∂t) < 0 must be satisfied. Diffusion instability in the second cell will take
place at D∗ < 0. Effective diffusion coefficient is negative for both cells. Conse-
quently, the analytical form of the potential energy of interacting impurity parti-
cles or clusters of different kind of molecules plays an important role in diffusion
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instability evaluation. In the region where the inequality 0 < x < x0 is fulfilled,
the function n(x) is convex upward (∂2n/∂x2) = 0. Impurity concentration must
increase (∂n1/∂t) > 0. Hence, the diffusion instability appears in the first cell at
D∗ < 0. In the region where the condition x0 < x < x1 is satisfied, the function
n(x) is convex downwards (∂2n/∂x2) > 0. According to the condition of instability,
the inequality (∂n2/∂t) < 0 must be satisfied. Diffusion instability in the second
cell will take place at D∗ < 0. Effective diffusion coefficient is negative for both
cells. If impurities during the period of diffusion instability are involved in any
chemical reactions, then it is impossible to introduce the concept of an effective
diffusion coefficient associated with their interaction with each other. Therefore,
the analytical type of potential energy of interaction between impurity particles or
liquid elements plays an important role in the development of diffusion instability.
Consequently, the analytical form of the potential energy of interacting impurity
particles or clusters of different kind of molecules plays an important role in diffu-
sion instability evaluation. This is the diffusion instability effect.

Long range interaction between Brownian particles was considered in [11]. We
define the effective interaction potential Π(k) between the Brownian particles. A
weak, slowly decreasing interaction with the distance occurs between particles mak-
ing a Brownian movement in a viscous liquid. When the particle moves, it causes
movement in the surrounding layers of liquid, which in turn can affect neighboring
particles and also set them in motion. The relative displacement of particles in
the environment of the remaining particles is characterized, along with a chaotic,
defined regular part. The joint movement of particles occurs as if there were quite
deterministic forces between them, depending in general on the distance and on the
shape of the particles. Calculations show that at small Reynolds numbers, spherical
particles with radii R1 and R2 repel one another with an average force F = −∇Π.
Effective potential of interacting particles is

Π(r) =
9
16

R1R2

|r1 − r2|2
kBT0 (6)

decreasing with distance as r−2 and the energy of this interaction is less than
kBT0; kB is the Boltzmanns constant, r1 and r2 are radius vectors determining
the position of the centers of the first and second particles, respectively. At big
distances between particles, the repulsive force is inversely proportional to the
cube of the distance. The Fourier transformation of (6) Π(k) = 9π2R1R2kBT0/8k
is always positive and, therefore, diffusion instability does not occur in this case.

Using similarity method, we suggest the new potential energy between the dif-
fusion particles

Π(r) =
U1U2

|r1 − r2|3
kBT0.

Fourier transformation can be written as

Π(k) = 4π(U1U2)1/2kBT0[cos(kR)Si(kR)− sin(kR)Ci(kR)]
1

kR
,

where R is a minimal distance between the interacting clusters having volumes U1

and U2; Si(x) and Ci(x) are integral sine and cosine. At small kR the curve has
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a shape of the potential hole, i.e., spherical liquid elements are attracted to each
other. Increasing the parameter kR, function Π(k) oscillates near the zero level.

Figure 2. The dependence of the potential energy versus parameter kR

This means that liquid elements are periodically attracted and repelled. Using the
asymptotic expressions of the functions Si(x) and Ci(x) we obtain

Π(k) ∼ −4π(U1U2)1/2 kBT0

(kR)2
.

Effective potential energy of two interacting cells is negative which may cause
negative diffusion instability.

5. Conclusion

Based on the stochastic impurity transfer equation or molecular clusters with vari-
able coefficients, the effect of their interaction on the nature of diffusion change is
studied. The concentration of impurities and the velocity of their movement is a
random function of spatial coordinates and time. The Picard method obtained a set
of stochastic differential equations for incompressible fluid that take into account
the potential energy of interacting elements. The turbulent diffusion coefficient is
calculated containing both molecular and turbulent diffusion coefficients. These ex-
pressions are valid for the arbitrary correlation function of the velocity fluctuation
of molecular clusters with spatial-temporal scales of turbulence considering the po-
tential energy of their interaction. A condition was found under which impurity
particles are attracted to each other, which causes a new effect of the “Diffusion
Instability.” In this case, the potential energy has the form of a potential hole,
and then oscillates to both positive and negative values, which correspond to the
repulsion and attraction of diffuse impurities.

The description of the turbulent diffusion in terms of the stochastic differen-
tial equations is very convenient for numerical modeling; such modeling can also
be considered as a general method of numerical solution of diffusion equations,
particularly one of the variants of the Monte Carlo method.
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