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The Dirichlet generalized and classical harmonic problems for the special type irregular 3-sided
pyramidal domain is considered. Under a generalized problem is meant the problem when a
boundary function has a finite number of first kind discontinuity curves. In the considered case,
edges of the pyramid are in a role of the mentioned curves and height of the pyramid passes
through the vertex of acute angle of base. In spite of difficulty of the problem domain, the
algorithm for numerical solution of the boundary problem is constructed, which consists of the
following main steps: a) application of the method of probabilistic solution (MPS), which in its
turn is based on a computer modeling of the Wiener process; b) finding the intersection point
of the path of Wiener process simulation and the pyramid surface; c) development of a code
for the numerical realization and checking the accuracy of calculated results; d) calculating
the meaning of a sought for function at any chosen points, which lie in the neighborhood
of the domain surface. For illustration, numerical an example is considered and results are
presented.
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1. Introduction

It is known(see e.g., [1-5]) that in practical stationary problems (for example, de-
termination of electrical potential, temperature potential, gravitational potential,
and so on) there are cases when it is necessary to consider the Dirichlet generalized
harmonic problem.

As is well known(see e.g., [1,6]) the methods used to obtain an approximate
solution to classical boundary-value problems are: a)less suitable or b)useless for
solving generalized boundary problems. In the first case, convergence of the ap-
proximate process is very slow in the neighborhood of discontinuity curves and,
consequently, the accuracy of approximate solution of the generalized problem is
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very low(see,e.g., [1-5]). In the second case, the process is unstable. For exam-
ple, a similar phenomenon takes place when solving the 3D Dirichlet generalized
harmonic problem by the MFS.

Therefore researchers have tried to conduct preliminary “improvements” of the
boundary value problem in question. For the Dirichlet generalized plane harmonic
problems the following methods were elaborated:I) A method of reduction of the
Dirichlet generalized harmonic problem to a classical problem (see, e.g., [7,8]); II)
A method of conformal mapping (see, e.g., [9]); III) A method of probabilistic
solution(see, e.g., [10,11]). It is evident, that in the case of 3D Dirichlet harmonic
problems, from the above mentioned methods we can apply only the third one.

For 3D Dirichlet generalized harmonic problems researchers face more significant
difficulties. In particular, there does not exist a universal approach that can be
applied to a wide class of domains.

The above-mentioned literature [1-5] deals with the simplified generalized prob-
lems. Mainly, the methods of separation of variables, particular solutions and
heuristic methods are applied to their solution. Respectively, the accuracy of the
solution is low. The heuristic methods do not guarantee to find the best solution.
Moreover, in some cases, they may give an incorrect solution and, thus we have
to check solutions in order to establish how they satisfy all conditions of a prob-
lem(see,e.g., [1]). Therefore, the construction of effective computational schemes
with a high accuracy for numerical solution of 3D Dirichlet generalized harmonic
problems, applicable to a wide class of domains, are both of theoretical and prac-
tical importance.

It should be noted that in [4], the existence of discontinuity curves is ignored
while solving the Dirichlet generalized harmonic simplest problems for a sphere.
This fact and also the application of classical methods is the main reason of low
accuracy. Therefore the for numerical solution of 3D Dirichlet generalized harmonic
problems we should apply such methods which do not require approximation of a
boundary function and in which the existence of discontinuity curves is not ignored.
The MPS is one such method.

2. Mathematical formulation of the generalized problem

Let D be the interior of an irregular 3-sided pyramid P3(h) ≡ P3 in the space
R3, where h is its height. According to the above-mentioned we consider the case,
when h coincides with the lateral edge of P3 and passes through the vertex of acute
angle of base. Without loss of generality, we assume that h is located on Ox3 of the
right-handed Cartesian coordinate system Ox1x2x3 and the base of P3 lies in the
plane Ox1x2. Besides, we assume that the vertices A1, A2, A3 of the base of P3 are
located in a counter-clockwise direction. Let us formulate the following problem
for the pyramid P3 ≡ D.

Problem A. The function g(y), given on the boundary S of the pyramid P3 is
continuous everywhere, except edges l1, l2, ..., l6, of P3, which represent the first
kind discontinuity curves for the function g(y). It is required to find a function

u(x) ≡ u(x1, x2, x3) ∈ C2(D)
⋂

C(D\
6⋃

k=1

lk), satisfying the following conditions:

∆u(x) = 0, x ∈ D, (2.1)
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u(y) = g(y), y ∈ S, y ∈ lk ⊂ S (k = 1, 6), (2.2)

|u(x)| < c, x ∈ D, (2.3)

where ∆ =
3∑

i=1

∂2

∂x2
i

is the Laplace operator, lk(k = 1, 6) are edges of P3, and c is a

real constant.
It is shown (see [12,13]) that Problem (2.1) -(2.3) has a unique solution depending

continuously on the initial data. For the generalized solution u(x), the generalized
extremum principle is valid,

min
x∈S

u(x) < u(x)
x∈D

< max
x∈S

u(x), (2.4)

where it is supposed that x∈lk(k = 1, 6) for x ∈ S.
Note (see [12]) that the additional requirement (2.3) of the boundedness plays an

important role in the extremum principle (2.4); it concerns only the neighborhoods
of discontinuity curves of the function g(y).

On the basis of (2.3), the values of u(y) are, in general, not uniquely defined on
the curves lk. In particular, if Problem A concerns the determination of a thermal
(or electric) field, then u(y) = 0 when y ∈ lk, respectively. In this case, in the
physical sense, the curves lk are non-conductors (or dielectrics). Otherwise, lk will
not be a discontinuity curve.

It is evident that, in the above-mentioned case, the boundary function g(y) has
the following form

g(y) =



g1(y), y ∈ S1,

g2(y), y ∈ S2,

g3(y), y ∈ S3,

g4(y), y ∈ S4,

0, y ∈ lk (k = 1, 6),

(2.5)

where: Si (i = 1, 3) and S4 are the lateral faces and the base of P3 out of bound-
aries), respectively; the functions gi(y), y ∈ Si (i = 1, 4) are continuous on the

parts Si of S. It is evident that S = (
4⋃

i=1
Si)

⋃
(

6⋃
k=1

lk).

Remark 1 : a) If the interior of S is empty then we have the generalized problem
with respect to closed shells.
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3. The method of probabilistic solution and simulation of the Wiener
process

This section briefly describes the proposed algorithm for numerical solving the
problems of type A. Its detailed description is suggested in [14]. The main theorem
that allows us to apply the MPS is the following one (see e.g., [13]).

Theorem 3.1 : If a finite domain D ∈ R3 is bounded by a piece-wise smooth
surface S and g(y) is continuous(or discontinuous) bounded function on S, then
the solution of the Dirichlet classical (or generalized) boundary value problem for
the Laplace equation at the fixed point x ∈ D has the following form

u(x) = Exg(x(τ)). (3.1)

In (3.1): Exg(x(τ)) is the mathematical expectation of values of the boundary
function g(y) at the random intersection points of the continuous Wiener process
trajectory and the boundary S; τ is a random moment of first exit of the Wiener
process x(t) = (x1(t), x2(t), x3(t)) from the domain D. It is assumed that the
starting point of the Wiener process is always x(t0) = (x1(t0), x2(t0), x3(t0)) ∈ D,
where the value of the desired function is being determined. If the number N of the
random intersection points yj = (yj

1, y
j
2, y

j
3) ∈ S (j = 1, 2, · · · , N) is sufficiently

large, then according to the law of large numbers, from (3.1) we have

u(x) ≈ uN (x) =
1
N

N∑
j=1

g(yj) (3.2)

or u(x) = lim uN (x) for N → ∞, in a probability sense. Thus, if we have the
Wiener process, then the approximate value of the probabilistic solution to the
Problem A at a point x ∈ D is calculated by formula (3.2).

In order to simulate the Wiener process, we construct the following recursion
(see e.g., [14]):

x1(tk) = x1(tk−1) + γ1(tk)/nq,

x2(tk) = x2(tk−1) + γ2(tk)/nq, (3.3)

x3(tk) = x3(tk−1) + γ3(tk)/nq,

(k = 1, 2, · · · ), x(t0) = x,

according to which the coordinates of the point x(tk) = (x1(tk), x2(tk), x3(tk))
are being determined. In (3.3): γ1(tk), γ2(tk), γ3(tk) are three normally distributed
independent random numbers for the k-th step, with means, equal to zero and vari-
ances, equal to 1 (The generation of above-mentioned numbers occurs separately);
nq is a quantification number such that 1/nq =

√
tk − tk−1 and when nq → ∞,

then the discrete process approaches the continuous Wiener process. In the imple-
mentation, the random process is simulated at each step of the walk and continues
until it crosses the boundary.

It is known that there exist two principles for generating random numbers, phys-
ical and algorithmic:



Vol. 28, No. 1, 2024 15

1. The physical principle of generation gives truly random numbers, but its re-
alization is expensive, especially in the multidimensional case, and therefore its
application is not practical.

2. In spite of a great number of algorithmic methods, generating random numbers,
they also have disadvantages which are contained in the generating principle itself,
resulting a sequence of not truly, but pseudo-random numbers.

In this paper, when solving the Dirichlet boundary problems for Laplace’s equa-
tion, we are using the pseudo-random numbers and their generation are performed
in MATLAB environment.

4. An auxiliary classic problem

It should be noted that in 3D case there are no exact test solutions for generalized
problems of type A. Therefore, for verification of the scheme needed for the numer-
ical solution of Problem A, the reliability of obtained results can be demonstrated
in the following way.

If we take gi(y) = 1/|y − x0| in boundary conditions (2.5), where y ∈ Si(i =
1, 4), x0 = (x0

1, x
0
2, x

0
3) ∈ D, and |y − x0| denotes the distance between the points

y and x0, then it is evident that the curves lk(k = 1, 6) represent removable dis-
continuity curves for the boundary function g(y). In the mentioned case instead of
generalized problem A we obtain the next Dirichlet classical harmonic problem.

Problem B. Find a Function u(x) ≡ u(x1, x2, x3) ∈ C2(D)
⋂

C(D) under the
following conditions:

∆u(x) = 0, x ∈ D,

u(y) = 1/|y − x0|, y ∈ S, x0 ∈ D.

We solve this problem by using the MPS with algorithm constructed for Problem
A. It is known that Problem B is well posed, i.e., its solution exists, is unique and
depends continuously on the data. An exact solution of Problem B has the form

u(x0, x) =
1

|x− x0|
, x ∈ D, x0 ∈ D. (4.1)

Note that the process of solving the Dirichlet classical harmonic problems numeri-
cally by the MPS is quite interesting and important (see e.g., [15,16]). In the present
paper, Problem B plays an auxiliary role and is used for checking the reliability of
the scheme, and the corresponding program is needed for a numerical solution of
Problem A. First, we solve Problem B and then compare the obtained results with
the exact solution and solve Problem A under the boundary conditions (2.5).

In this paper the MPS is applied to one example. In the tables, N denotes
a number of trajectories in the simulated Wiener process for the given points
xi = (xi

1, x
i
2, x

i
3) ∈ D, and nq is a number of quantification. The tables below

present for problem of type B the numerical absolute errors ∆i at the points
xi ∈ D of uN (x), in the MPS approximation, for various values of nq and N , and
the numbers are given in scientific format. In particular,

∆i = max|uN (xi)− u(x0, xi)|, (i = 1, 2, · · · , 5),
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where uN (xi) is the approximate solution of Problem B at the point xi, which is
defined by using formula (3.2), and the exact solution u(x0, xi) of the test problem
is given by (4.1). In the tables, for problems of type A, the probabilistic solution
uN (x) is calculated at the points xi, defined by (3.2).

Remark 2 : The Problems of type A and B for ellipsoidal, spherical, cylindrical,
conic, prismatic, regular and irregular pyramidal, axis-symmetric finite domains
with a cylindrical hole, external Dirichlet generalized problem for a sphere are
considered in [12,14,16,17-21].

5. Numerical example

In order to determine the intersection points yj = (yj
1, y

j
2, y

j
3) (j = 1, N) of the

simulated process path and the surface S of P3, first of all, for each current point
x(tk) defined from (3.3) we check whether it belongs to P3 or not.

Knowing the parameter h and coordinates of the vertices M,A1, A2, A3, of P3, we
can: 1) write down equations of P3 edges; 2) define angles of inclination α1, α2, α3

of the lateral faces with respect to the base of P3; 3) write down equations of lateral
faces.

Example 1. This example concerns such stationary problems which are used to
determine the potential of an electric field or the temperature of a thermal field,
and so on, in the domain D. In the role of D is taken interior of the irregular
3-sided pyramid P3(h), where h is its height.

As it was already noted above, we consider the case, when h is the lateral edge
of P3 and the angle between lateral faces containing h is acute. Besides, we assume
that the base of P3 lies in the first quarter of the plane Ox1x2, h lies on Ox3, and
A1 = (a, b, 0), A2 = (0, c, 0), A3 ≡ O = (0, 0, 0),M = (0, 0, h).

It is easy to see, that the equations of lines A1A2, A1A3, A2A3 are

((b− c)/a)x1 − x2 + c = 0, (b/a)x1 − x2 = 0, x1 = 0 and x3 = 0, (5.1)

respectively and the equations of lines: A1M,A2M,A3M are the following

h(x1+x2)+(a+b)x3−h(a+b) = 0, (h/c)x2+x3−h = 0, x1 = 0 and x2 = 0, (5.2)

accordingly.
First of all we must define angles α1, α2, α3 of inclination of the lateral faces of

P3: S1 = MA1A2;S2 = MA2A3;S3 = MA3A1, with respect to the base of P3.
It is clear that α1 = arctan(h/∆1), where ∆1 is a distance between the point A3

and the line A1A2. From the equation of line A1A2 (see (5.1)) ∆1 = |c|/
√

kk2 + 1,
where kk = (b − c)/a. Analogously, angles for the faces S2 and S3 are α2 = α3 =
π/2.

It is not difficult to show that in the coordinate system Ox1x2x3, the equations
of faces S1, S2, S3, S4 are the following

S1 : h(c− b)x1 + ahx2 + acx3 − ahc = 0; S2 : x1 = 0;

S3 : bx1 − ax2 = 0; S4 : x3 = 0.
(5.3)
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We have now the necessary information about the pyramid P3 in order to estab-
lish whether each current point x(tk), defined from (3.3) belongs to P3 or not. For
this, we operate in the following way. For each step of simulated Wiener process
we calculate angles βm(m = 1, 3) of inclinations of the planes passing through the
points x(tk), Am, Am+1 (A4 ≡ A1, with respect to the base of P3. It is easy to see
that

β1 = arctan(x3(tk)/dd), β2 = arctan(x3(tk)/x1(tk)), β3 = arctan(x3(tk)/dd∗),

where dd and dd∗ are the distances between the point (x1(tk), x2(tk)) and the lines
A1A2 and A1A3, respectively. On the basis of equations of lines A1A2 and A1A3

(see (5.1)) we have

dd = |kkx1(tk)− x2(tk) + c|/
√

(kk)2 + 1, dd∗ = |k1x1(tk)− x2(tk)|/
√

(k1)2 + 1,

where kk = (b− c)/a, k1 = b/a.
After calculating the angles βm (m = 1, 2, 3), we can compare them with angle

αm(m = 1, 2, 3). In particular:
(1∗) if βm < αm and 0 < x3(tk) < h and x1(tk) > 0 and x2(tk) > 0 for m = 1, 2, 3

then the process is continued until it crosses the surface S;
(2∗) if β1 = α1 and 0 < x3(tk) < h and x1(tk) > 0 and x2(tk) > 0, then x(tk) ∈ S1

or yj = (yj
1, y

j
2, y

j
3) = x(tk);

(3∗) if β1 > α1 and 0 < x3(tk) < h, this means that the trajectory of the modu-
lated Wiener process intersects the lateral face S1 ≡ A1A2M of P3 or x(tk−1) ∈ D
for the moment t = tk−1 and x(tk) ∈ P3 for the moment t = tk. In this case, for
approximate determination of the point yj , a parametric equation of a line L pass-
ing through the points x(tk−1) and x(tk) is obtained initially; it has the following
form: 

x1 = x1(tk−1) + (x1(tk)− x1(tk−1))θ,

x2 = x2(tk−1) + (x2(tk)− x2(tk−1))θ,

x3 = x3(tk−1) + (x3(tk)− x3(tk−1))θ,

(5.4)

where (x1, x2, x3) is a current point of L and θ is a parameter (−∞ < θ < ∞).
If we substitute the expressions of x1, x2, x3, defined from (5.4), into (5.3) then

we obtain the equations of faces S1, S2, S3, S4 with respect to θ, which have the
following form

S1 : θ = (ahc− h(c− b)x1(tk−1)− ahx2(tk−1)− acx3(tk−1))
/(h(c− b)C1 + ahC2 + acC3),

S2 : x1 = 0, θ = −x1(tk−1)/C1,

S3 : θ = (ax2(tk−1)− bx1(tk−1))/(bC1 − aC2),

S4 : x3 = 0, θ = −x3(tk−1)/C3,

(5.5)
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where C1 = x1(tk)− x1(tk−1), C2 = x2(tk)− x2(tk−1), C3 = x3(tk)− x3(tk−1).
It is evident that on the basis of (5.5), if the intersection point yj ∈ Si(i = 1, 4)

then yj = (x1(θ), x2(θ), x3(θ)), where θ is defined by (5.5), according to Si.

Remark 3 : It is evident that probability of passing the path of simulated Wiener
process through the discontinuous line, equals to zero, but if for any j the inter-
section point yj lies on the discontinuous line (such case is taken into account in
the calculation algorithm), then g(yj) = 0 is taken in the role of j-th term of the
series in formula (3.2).

In addition to the above, using equations (5.1) and (5.2) we can determine
whether the intersection point yj is on the edges of the pyramid or not.

Problems A and B are solved when h = 2, a = 2, b = 2, c = 3, x0 = (0.75, 1.5,−4).
Since a = b, the angle between lateral faces containing h is to equal π/4. In Problem
A the boundary function g(y) ≡ g(y1, y2, y3) has the following form

g(y) =



1.5, y ∈ S1,

2, y ∈ S2,

1, y ∈ S3,

3, y ∈ S4,

0, y ∈ lk (k = 1, 6).

(5.6)

In (5.6): Si(i = 1, 3) and S4 are the lateral faces and the base of P3 without
discontinuity curves (edges), respectively; lk(k = 1, 6) are the edges of P3. In the
physical sense, lk are non-conductors (or dielectrics).

In Example 1, considered by us for determination of the intersection points yj =
(yj

1, y
j
2, y

j
3) (j = 1, N) of the trajectory of a discrete Wiener process and the surface

S, we have used the scheme, described above. As it was mentioned in Section 3, for
the verification of calculating program for Problem A, firstly we solve the auxiliary
Problem B.

Table 5.1B. Results for Problem B (in Example 1)
xi (0.3, 0.8, 0.5) (0.3, 0.8, 1) (0.1, 0.2, 0.2) (0.1, 0.2, 1) (0.1, 0.2, 1.5)
N ∆1, nq = 200 ∆2, nq = 200 ∆3, nq = 200 ∆4, nq = 200 ∆5, nq = 200

5E + 3 0.46E − 3 0.32E − 3 0.10E − 3 0.12E − 3 0.47E − 3
1E + 4 0.19E − 4 0.12E − 3 0.62E − 4 0.59E − 5 0.18E − 3
5E + 4 0.26E − 3 0.84E − 4 0.50E − 4 0.96E − 4 0.18E − 3
1E + 5 0.18E − 3 0.13E − 4 0.20E − 3 0.57E − 4 0.12E − 3
5E + 5 0.19E − 3 0.75E − 4 0.19E − 3 0.12E − 3 0.53E − 4
1E + 6 0.20E − 3 0.66E − 4 0.95E − 4 0.84E − 4 0.11E − 3

In Table 5.1B the numerical absolute errors ∆i of the approximate solution uN (x) of the
test problem B at points xi ∈ D (i = 1, 5) are presented for nq = 200 and various values
of N . On the basis of obtained results, we can conclude that the calculating program for
Problem A is correct.

Regardless of this, on the basis of analysis of obtained results, we come to the following:
the accuracy is low at points x1, x3, x4, x5 and it does not improves when N →∞ (except
the point x2).

According to our opinion, the reason of indicated circumstances consists in: 1. the com-
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plexity of problem domain; 2. location of points xi(i = 1, 5) in the neighborhood of the
domain surface.

The above mentioned inconvenience can be bypassed if for each point xi we select the
optimal, in the sense of accuracy, quantification number nq. The offered approach is correct
theoretically (see Section 3). Thus, for each point xi we solve the test problem B, e.g. for
nq = 50, 100, 200 and so on. We stop this process if for some values of nq the accuracy of
the corresponding probabilistic solution is enough for many practical problems, and the
accuracy increases as N →∞.

For illustration, using the above described approach, for points xi(i = 1, 5) are selected
two variants of numbers nq: I)(50,200,50,50,50); II)(400,200,100,100,100). In the Table 5.2B
and Table 5.3B the numerical absolute errors ∆i of the approximate solution uN (x) of the
test Problem B at the point xi for variants I) and II) are presented, respectively.

Table 5.2B. Results for Problem B (in Example 1)
xi (0.3, 0.8, 0.5) (0.3, 0.8, 1) (0.1, 0.2, 0.2) (0.1, 0.2, 1) (0.1, 0.2, 1.5)
N ∆1, nq = 50 ∆2, nq = 200 ∆3, nq = 50 ∆4, nq = 50 ∆5, nq = 50

5E + 3 0.32E − 3 0.47E − 3 0.25E − 4 0.48E − 3 0.23E − 3
1E + 4 0.38E − 4 0.57E − 3 0.23E − 3 0.29E − 3 0.17E − 3
5E + 4 0.94E − 4 0.17E − 3 0.24E − 5 0.23E − 3 0.80E − 4
1E + 5 0.13E − 4 0.67E − 4 0.85E − 4 0.96E − 4 0.30E − 4
5E + 5 0.92E − 4 0.69E − 5 0.31E − 4 0.27E − 6 0.15E − 4
1E + 6 0.72E − 4 0.19E − 4 0.70E − 4 0.10E − 4 0.32E − 4

In the Table 5.2A the values of the approximate solution uN (x) to Problem A for the
same points xi(i = 1, 5) and corresponding numbers nq are given (see Table 5.2B). The
results have sufficient accuracy for many practical problems and are in good agreement
with the real physical picture.

Table 5.2A. Results for Problem A (in Example 1)
xi (0.3, 0.8, 0.5) (0.3, 0.8, 1) (0.1, 0.2, 0.2) (0.1, 0.2, 1) (0.1, 0.2, 1.5)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.94840 1.68540 1.83020 1.68800 1.64160
1E + 4 1.94460 1.68780 1.83715 1.68125 1.64940
5E + 4 1.94041 1.68388 1.83458 1.68475 1.64744
1E + 5 1.93784 1.68438 1.83559 1.68163 1.64615
5E + 5 1.93989 1.68488 1.83309 1.68343 1.64916
1E + 6 1.93987 1.68545 1.83307 1.68371 1.64941
2E + 6 1.93994 1.68551 1.83423 1.68383 1.64831

In the Table 5.3B the numerical absolute errors ∆i of the approximate solution uN (x)
of the test problem B at the points xi for variant II) are presented.

Table 5.3B. Results for Problem B (in Example 1)
xi (0.3, 0.8, 0.5) (0.3, 0.8, 1) (0.1, 0.2, 0.2) (0.1, 0.2, 1) (0.1, 0.2, 1.5)
N ∆1, nq = 400 ∆2, nq = 200 ∆3, nq = 100 ∆4, nq = 100 ∆5, nq = 100

5E + 3 0.43E − 3 0.62E − 3 0.36E − 3 0.30E − 4 0.17E − 3
1E + 4 0.43E − 4 0.11E − 3 0.10E − 3 0.21E − 3 0.19E − 3
5E + 4 0.45E − 4 0.21E − 4 0.75E − 4 0.11E − 3 0.12E − 3
1E + 5 0.10E − 3 0.27E − 4 0.61E − 4 0.30E − 4 0.58E − 4
5E + 5 0.46E − 4 0.16E − 4 0.54E − 4 0.23E − 4 0.58E − 4
1E + 6 0.82E − 5 0.64E − 4 0.29E − 4 0.21E − 4 0.49E − 4

The values of approximate solution uN (x) to the Problem A for the same points
xi(i = 1, 5) are given in Table 5.3A. The obtained results have sufficient accuracy for
many practical problems and are in good agreement with the real physical picture.



20 Bulletin of TICMI

Table 5.3A. Results for Problem A (in Example 1)
xi (0.3, 0.8, 0.5) (0.3, 0.8, 1) (0.1, 0.2, 0.2) (0.1, 0.2, 1) (0.1, 0.2, 1.5)
N uN (x1), uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.93090 1.69030 1.84130 1.68660 1.65570
1E + 4 1.95160 1.67800 1.83740 1.69745 1.65285
5E + 4 1.94059 1.68813 1.83742 1.68840 1.65859
1E + 5 1.94606 1.68632 1.83663 1.69337 1.65570
5E + 5 1.94435 1.68563 1.83743 1.69100 1.65607
1E + 6 1.94430 1.68630 1.83736 1.69062 1.65617

In this work we solved the problem of type A when boundary functions gi(y)(i = 1, 4)
are constants. This was motivated by our interest to find out how well the obtained results
agree with real physical picture. It is evident that solving Problem A under condition (2.5)
is as easy as Problem B.

The analysis of the results of numerical experiments show that the results obtained by the
proposed algorithm are reliable and it is effective for numerical solution of problems of type
B and A. In particular, the algorithm is sufficiently simple for numerical implementation.

Besides, for the probabilistic solution uN (x) of Problems B and A, in the neighborhood
of the domain surface, the method for selection optimal numbers nq is given.

6. Concluding remarks

1. This paper demonstrates that the suggested algorithm is ideally suited for
numerical solution of problems B and A in such difficult domains as irregular
pyramids.

2. According to this algorithm, there is no need to approximate the boundary
function.

3. The computational outlays of this algorithm is low and the accuracy is suffi-
cient for practical purposes.

4. The next steps of our research are related to:
* The numerical solution of Dirichlet classical and generalized harmonic problems

for the infinite space R3 with a finite number of spherical cavities.
* The MPS for the same type problem in finite domains which are bounded by

several closed surfaces.
* The MPS for the same type problem in infinite 2D domains with a finite number

of circular holes.
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