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This article deals with the Dirichlet problem for a degenerate nonself-adjoint differential-
operator equation of higher order. We prove existence and uniqueness of the generalized
solution as well as establish some analogue of the Keldysh theorem for the corresponding
one-dimensional equation.
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1. Introduction

The main object of the present paper is the degenerate differential-operator equa-
tion

Lu ≡ (−1)m
(
tαu(m)

)(m)
+A

(
tα−1u(m)

)(m−1)
+ Ptβu = f(t), (1)

where m ∈ N, t belongs to the finite interval (0, b), α ≥ 0, α 6= 1, 3, . . . ,2m − 1,
β ≥ α− 2m, A and P are linear operators (in general unbounded) in the separable
Hilbert space H, f ∈ L2,−β((0, b), H), i.e.,

‖f‖2L2,−β((0,b),H) =

∫ b

0
t−β‖f(t)‖2H dt <∞.

We suppose that the operators A and P have common complete system of eigen-
functions {ϕk}∞k=1, Aϕk = akϕk, Pϕk = pkϕk, k ∈ N, which form a Riesz basis in
H, i.e., for any x ∈ H there is a unique representation

x =

∞∑
k=1

xkϕk
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and there are constants c1, c2 > 0 such that

c1

∞∑
k=1

|xk|2 ≤ ||x||2 ≤ c2

∞∑
k=1

|xk|2.

If m = 1, the operator A is a multiplication operator, Au = au, a ∈ R, a 6= 0
and Pu = −uxx, x ∈ (0, c) then we obtain the degenerate elliptic operator in the
rectangle (0, b)×(0, c). The dependence of the character of the boundary conditions
with respect to t for t = 0 on the sign of the number a was first observed by
M.V. Keldish in [5] and next generalized by G. Jaiani in [4] (thus the statement
of the boundary value problem depends on the “lower order” terms). The case
m = 1, β = 0, 0 ≤ α < 2 was considered in [2], [6] (here A = 0) and the case m = 2,
β = 0, 0 ≤ α ≤ 4 in [8]. In [9] the self-adjoint case of higher order degenerate
differential-operator equations for arbitrary α ≥ 0, α 6= 1, 3, . . . , 2m − 1 has been
considered.
Our approach is based on the consideration of the one-dimensional equation (1),
when the operators A and P are multiplication operators by numbers a and p
respectively, Au = au, Pu = pu, a, p ∈ C (see [3]).
Observe that this method suggested by A.A. Dezin (see [3]) has been used for the
degenerate self-adjoint operator equation on the infinite interval (1,+∞) in [12]
and with arbitrary weight function on the finite interval in [11].

2. One-dimensional case

2.1. Weighted Sobolev spaces Ẇm
α (0, b)

Let ˙Cm[0, b] denote the functions u ∈ Cm[0, b], which satisfy the conditions

u(k)(0) = u(k)(b) = 0, k = 0, 1, . . . ,m− 1. (2)

Define Ẇm
α (0, b) as the completion of ˙Cm[0, b] in the norm

‖u‖2
Ẇm
α (0,b)

=

∫ b

0
tα|u(m)(t)|2 dt.

Denote the corresponding scalar product in Ẇm
α (0, b) by {u, v}α = (tαu(m), v(m)),

where (·, ·) stands for the scalar product in L2(0.b).
Note that the functions u ∈ Ẇm

α (0, b) for every t0 ∈ (ε, b], ε > 0 have the finite
values u(k)(t0), k = 0, 1, . . . ,m− 1 and u(k)(b) = 0, k = 0, 1, . . . ,m− 1 (see [1]).
For the proof of the following propositions we refer to [9] and [10].

Proposition 2.1: For the functions u ∈ Ẇm
α (0, b), α 6= 1, 3, . . . , 2m − 1 we have

the following estimates

|u(k)(t)|2 ≤ C1t
2m−2k−1−α‖u‖2

Ẇm
α (0,b)

, k = 0, 1, . . . ,m− 1. (3)

It follows from Proposition 2.1 that in the case α < 1 (weak degeneracy) u(j)(0) = 0
for all j = 0, 1, . . . ,m− 1, while for α > 1 (strong degeneracy) not all u(j)(0) = 0.
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More precisely, for 1 < α < 2m − 1 the derivatives at zero u(j)(0) = 0 only for
j = 0, 1, . . . , sα, where sα = m − 1 − [α+1

2 ] (here [a] is the integral part of the a)

and for α > 2m− 1 all u(j)(0), j = 0, 1, . . . ,m− 1 in general may be infinite.

Denote L2,β(0, b) =
{
f,
∫ b

0 t
β|f(t)|2 dt < +∞

}
. Observe that for α ≤ β we have

L2,α(0, b) ⊂ L2,β(0, b).

Proposition 2.2: For β ≥ α− 2m we have a continuous embedding

Ẇm
α (0, b) ⊂ L2,β(0, b), (4)

which is compact for β > α− 2m.

Note that the embedding (4) in the case of β = α − 2m is not compact while for
β < α− 2m it fails.
Denote d(m,α) = 4−m(α−1)2(α−3)2 · · · (α− (2m−1))2. In Proposition 2.2 using
Hardy inequality (see [7]) it was proved that∫ b

0
tα|u(m)(t)|2 dt ≥ d(m,α)

∫ b

0
tα−2m|u(t)|2 dt. (5)

Note that here d(m,α) is the exact number. Now it is easy to check that for
β ≥ α− 2m

‖u‖2
Ẇm
α (0,b)

≥ bα−2m−βd(m,α)‖u‖2L2,β(0,b). (6)

2.2. Nonself-adjoint degenerate equations

In this subsection we consider one-dimensional version of equation (1)

Su ≡ (−1)m
(
tαu(m)

)(m)
+ a
(
tα−1u(m)

)(m−1)
+ ptβu = f(t), (7)

where α ≥ 0, α 6= 1, 3, . . . , 2m − 1, β ≥ α − 2m, f ∈ L2,−β(0, b), a 6= 0 and p are
real constants.

Definition 2.3: A function u ∈ Ẇm
α (0, b) is called a generalized solution of equa-

tion (7), if for arbitrary v ∈ Ẇm
α (0, b) we have

{u, v}α + a(−1)m−1
(
tα−1u(m), v(m−1)

)
+ p(tβu, v) = (f, v). (8)

Theorem 2.4 : Let the following condition be fulfilled

a(α− 1)(−1)m >0,

γ = bα−2m−β(d(m,α)+
a

2
(α− 1)(−1)md(m− 1, α− 2)

)
+ p > 0.

(9)

Then the generalized solution of equation (7) exists and is unique for every
f ∈ L2,−β(0, b).

Proof : Uniqueness. To prove the uniqueness of the solution we set in equality (8)
f = 0 and v = u. Let α > 1 (in the case α < 1 the proof is similar and we use
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tα−1|u(m−1)(t)|2

)
|t=0 = 0, which follows from Proposition 2.1). Then integrating

by parts we obtain

(
tα−1u(m), u(m−1)

)
= −1

2

(
tα−1|u(m−1)(t)|2

)
|t=0 −

α− 1

2

∫ b

0
tα−2|u(m−1)(t)|2 dt.

It follows from the inequality (3) for k = m−1 that the value
(
tα−1|u(m−1)(t)|2

)
|t=0

is finite. On the other hand, using inequality (5) we get∫ b

0
tα−2|u(m−1)(t)|2 dt ≥ d(m− 1, α− 2)

∫ b

0
tα−2m|u(t)|2 dt.

Hence using inequality (6) we obtain

0 = {u, u}α+a(−1)m−1
(
tα−1u(m), u(m−1)

)
+ p(tβu, u)

≥a
2

(−1)m
(
tα−1|u(m−1)(t)|2

)
|t=0 + γ

∫ b

0
tβ|u(t)|2 dt.

Now uniqueness of the generalized solution follows from condition (9).
Existence. To prove the existence of the generalized solution define a linear func-
tional lf (v) = (f, v), v ∈ Ẇm

α (0, b). From the continuity of the embedding (4) it
follows that

|lf (v)| ≤ ‖f‖L2,−β(0,b)‖v‖L2,β(0,b) ≤ c‖f‖L2,−β(0,b)‖v‖Ẇm
α (0,b),

therefore the linear functional lf (v) is bounded on Ẇm
α (0, b). Hence it can be

represented in the form lf (v) = (f, v) = {u∗, v}, u∗ ∈ Ẇm
α (0, b) (this follows

from the Riesz theorem on the representation of the linear continuous func-
tional). The last two terms in the left hand-side of equality (8) also can be re-
garded as a continuous linear functional relative to u and represented in the form
{u,Kv}α,Kv ∈ Ẇm

α (0, b). In fact, using inequality (5) we may write

|a(−1)m−1
(
tα−1u(m), v(m−1)

)
+p(tβu, v)|

≤|a(t
α

2 u(m), t
α

2
−1v(m−1))|+ |p(t

β

2 u, t
β

2 v)|

≤c1‖u‖Ẇm
α (0,b)

{∫ b

0
tα−2|v(m−1)(t)|2 dt

}1/2

+c2‖u‖L2,α−2m(0,b)‖v‖L2,α−2m(0,b)

≤ 2c1

|α− 1|
‖u‖Ẇm

α (0,b)‖v‖Ẇm
α (0,b) + c3‖u‖Ẇm

α (0,b)‖v‖Ẇm
α (0,b)

=c‖u‖Ẇm
α (0,b)‖v‖Ẇm

α (0,b).

From equality (8) we deduce that for any v ∈ Ẇm
α (0, b) we have

{u, (I +K)v}α = {u∗, v}α. (10)
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Observe that the image of the operator I +K is dense in Ẇm
α (0, b). Indeed, if we

have some u0 ∈ Ẇm
α (0, b) such that

{u0, (I +K)v}α = 0

for every v ∈ Ẇm
α (0, b), we obtain u0 = 0, since we have already proved uniqueness

of the generalized solution for equation (7).
Assume that 0 < σd(m,α)bα−2m−β ≤ γ. Then we can write

{u, (I +K)u}α ≥ σ{u, u}α +
(
bα−2m−β((1− σ)d(m,α)

+
a

2
(α− 1)(−1)md(m− 1, α− 2)

)
+ p
) ∫ b

0
tβ|u(t)|2 dt

= σ{u, u}α +
(
γ − σd(m,α)bα−2m−β) ∫ b

0
tβ|u(t)|2 dt

≥ σ{u, u}α.

Finally we get

{u, (I +K)u}α ≥ σ{u, u}α. (11)

From (11) it follows that (I + K)−1 is defined on Ẇm
α (0, b) and is bounded. Con-

sequently there exist operator I + K∗ and (I + K∗)−1 = ((I + K)−1)∗ (here K∗

means the adjoint operator). Hence from (10) we obtain

u = (I +K∗)−1u∗.

�

Define an operator S : D(S) ⊂ Ẇm
α (0, b) ⊂ L2,β(0, b)→ L2,−β(0, b).

Definition 2.5: We say that u ∈ Ẇm
α (0, b) belongs to D(S) if there exists

f ∈ L2,−β(0, b) such that equality (8) is fulfilled for every v ∈ Ẇm
α (0, b). In this

case we write Su = f .

The operator S acts from the space L2,β(0, b) to L2,−β(0, b). It is easy to check that
S := t−βS,D(S) = D(S), S : L2,β(0, b) → L2,β(0, b) is an operator in the space
L2,β(0, b), since if f ∈ L2,−β(0, b) then f1 := t−βf ∈ L2,β(0, b) and ‖f‖L2,−β(0,b) =
‖f1‖L2,β(0,b).

Proposition 2.6: Under the assumptions of Theorem 2.4 the inverse operator
S
−1 : L2,β(0, b) → L2,β(0, b) is continuous for β ≥ α − 2m and compact for
β > α− 2m.

Proof : For the proof first observe that for u ∈ D(S) we have

‖u‖L2,β(0,b) ≤ c‖f‖L2,−β(0,b) = c‖f1‖L2,β(0,b).

In fact, setting v = u in equality (8), using inequalities (6), (11) and applying



20 Bulletin of TICMI

considerations of Theorem 2.4, we get

σbα−2m−βd(m,α)‖u‖2L2,β(0,b) ≤ σd(m,α)‖u‖2
Ẇm
α (0,b)

≤ {(I +K)u, u}α = (f, u)

≤ ‖f‖L2,−β(0,b)‖u‖L2,β(0,b)

= ‖f1‖L2,β(0,b)‖u‖L2,β(0,b).

Thus we obtain

‖S−1f1‖L2,β(0,b) ≤ c‖f1‖L2,β(0,b), (12)

consequently the continuity of S−1 for β ≥ α−2m is proved. To show the compact-
ness of S−1 for β < α−2m it is enough to apply the compactness of the embedding
(4) for β < α− 2m. �

Let us consider the following equation

Tv ≡ (−1)m
(
tαv(m)

)(m) − a
(
tα−1v(m−1)

)(m)
+ ptβv = g(t), (13)

where α ≥ 0, α 6= 1, 3, . . . , 2m − 1, β ≥ α − 2m, g ∈ L2,−β(0, b), a 6= 0 and p are
real constants.

Definition 2.7: We say that v ∈ L2,β(0, b) is a generalized solution of equation
(13), if for every u ∈ D(S) the following equality holds

(Su, v) = (u, g). (14)

Let g1 := t−βg. Definition 2.7 of the generalized solution as above defines an
operator T : L2,β(0, b) → L2,β(0, b), T := t−βT . Actually we have defined the
operator T as the adjoint to S operator in L2,β(0, b), i.e.,

T = S
∗.

Theorem 2.8 : Under the assumptions of Theorem 2.4 the generalized solution of
equation (13) exists and is unique for every g ∈ L2,−β(0, b). Moreover, the inverse
operator T−1 : L2,β(0, b) → L2,β(0, b) is continuous for β ≥ α − 2m and compact
for β > α− 2m.

Proof : Solvability of the equation Su = f1 for any f1 ∈ L2,−β(0, b) (see Theo-
rem 2.4) implies uniqueness of the solution of equation (13), while existence of the
bounded inverse operator S−1 (see Proposition 2.6) implies solvability of (13) for
any g ∈ L2,−β(0, b) (see, for instance, [13]). Since we have (S∗)−1 = (S−1)∗, bound-
edness and compactness of the operator S−1 imply boundedness and compactness
of the operator T−1 for β ≥ α− 2m and β > α− 2m respectively (see Proposition
2.6). �

Remark 1 : For α > 1 and for every generalized solution v of equation (13) we
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have (
tα−1|u(m−1)(t)|2

)
|t=0 = 0. (15)

In fact, replacing g by Tv in equality (14), integrating by parts the second term and
using equality (8) we obtain (15). Note also that for equation (7) the left-hand side
of (15) is only bounded. This is some analogue of the Keldysh theorem (see [5]).

Remark 2 : Note another interesting phenomenon connected with degenerate
equations, namely appearing continuous spectrum. Assume that in equation (7)
a = p = 0 and β = α−2m. In [10] it was proved that the spectrum of the operator

Bu := (−1)mt2m−α
(
tαu(m)

)(m)
, B : L2,α−2m(0, b)→ L2,α−2m(0, b)

is purely continuous and coincides with the ray [d(m,α),+∞). Note also that the
spectrum of the operator Qu := (−1)mt−β(tαu(m))(m), Q : L2,β(0, b) → L2,β(0, b)
for β > α− 2m is discrete.

3. Dirichlet problem for degenerate differential-operator equations

In this section we consider the operator equation

Lu ≡ (−1)m
(
tαu(m)

)(m)
+A

(
tα−1u(m)

)(m−1)
+ Ptβu = f(t), (16)

where α ≥ 0, α 6= 1, 3, . . . , 2m − 1, β ≥ α − 2m, A and P are linear operators in
the separable Hilbert space H, f ∈ L2,−β((0, b), H).
By assumption linear operators A and P have common complete system of eigen-
functions {ϕk}∞k=1, Aϕk = akϕk, Pϕk = pkϕk, k ∈ N, which forms a Riesz basis in
H, i.e., we can write

u(t) =

∞∑
k=1

uk(t)ϕk, f(t) =

∞∑
k=1

fk(t)ϕk. (17)

Hence operator equation (16) can be decomposed into an infinite chain of ordinary
differential equations

Lkuk ≡ (−1)m
(
tαu

(m)
k

)(m)
+ ak

(
tα−1u

(m)
k

)(m−1)
+ pkt

βuk = fk(t), k ∈ N. (18)

It follows from the condition f ∈ L2,−β((0, b), H) that fk ∈ L2,−β(0, b), k ∈ N. For
one-dimensional equations (18) we can define the generalized solutions uk(t), k ∈ N
(see Section 2).

Definition 3.1: A function u ∈ L2,β((0, b), H) admitting representation

u(t) =

∞∑
k=1

uk(t)ϕk,
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where uk(t), k ∈ N are the generalized solutions of the one-dimensional equations
(18) is called a generalized solution of the operator equation (16).

Actually we have defined the operator L as the closure of the differential operation
L(D) originally defined on all finite linear combinations of functions uk(t)ϕk, k ∈ N,
where uk ∈ D(Lk).
The following result is a consequence of the general results of A.A. Dezin (see [3]).

Theorem 3.2 : The operator equation (16) is uniquely solvable for every
f ∈ L2,−β((0, b), H) if and only if the equations (18) are uniquely solvable for every
fk ∈ L2,−β(0, b), k ∈ N and uniformly with respect to k ∈ N

‖uk‖L2,β(0,b) ≤ c‖fk‖L2,−β(0,b). (19)

Theorems 2.4 and 2.8 shows us that a sufficient condition for relations (19) are the
conditions

γk = bα−2m−β(d(m,α)+
ak
2

(α−1)(−1)md(m−1, α−2)
)
+pk > ε > 0, k ∈ N. (20)

Here we assume that ak 6= 0, ak and pk are real for k ∈ N. Thus we get the following
result.

Theorem 3.3 : Let the condition (20) be fulfilled. Then operator equation (16)
has a unique generalized solution for every f ∈ L2,−β((0, b), H).

Proof : Since the system {ϕk}∞k=1 forms a Riesz basis in H then according to (19)
we can write

‖u‖2L2,β((0,b),H) =

∫ b

0
tβ‖u(t)‖2H dt

≤ c1

∫ b

0
tβ
∞∑
k=1

|uk(t)|2 dt

≤ c2

∞∑
k=1

‖fk‖2L2,−β(0,b)

≤ C‖f‖L2,−β((0,b),H).

(21)

�

It follows from inequality (21) that the inverse operator L−1 : L2,−β((0, b), H) →
L2,β((0, b), H) is bounded for β ≥ α − 2m. In contrast to the one-dimensional
case (see Proposition 2.6 and Theorem 2.8) this operator for β > α − 2m will
not be compact (it will be a compact operator only in case when the space H
is finite-dimensional). The operator L acts from the space L2,β((0, b), H) to the
space L2,−β((0, b), H). As in one-dimensional case define an operator acting in the
same space, which is necessary to explore spectral properties of the operators. Set
f = tβg. Then ‖f‖L2,−β((0,b),H) = ‖g‖L2,β((0,b),H). Hence the operator L = t−βL is
an operator in the space L2,β((0, b), H). As a consequence of Theorem 3.3 we can
state that 0 ∈ ρ(L), where ρ(L) is the resolvent set of the operator L.
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Remark 1 : The simplest example of the operators described in Introduction
consists of the operators on the n-dimensional cube V = [0, 2π]n, generated by
differential expressions of the form

L(−iD)u ≡
∑
|α|≤m

aαD
αu

with constant coefficients. Here α ∈ Zn+ is a multi-index. This class of operators is
at the same time quite a large class. Let P∞ be the set of smooth functions that
are periodic in each variable. Let s ∈ Zn. To every differential operation L(−iD)
we can associate a polynomial A(s) with constant coefficients such that

A(−iD)eis·x = A(s)eis·x, s · x = s1x1 + s2x2 + . . .+ snxn.

We define the corresponding operator A : L2(V ) → L2(V ) to be the closure in
L2(V ) of the differential operation A(−iD) first defined on P∞. Such operators are
called Π-operators and have many interesting properties. The role of the functions
{ϕk}∞k=1 is played by the functions eis·x, s ∈ Zn. For details see the book of A.A.
Dezin [3].
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