# Nonself-Adjoint Degenerate Differential-Operator Equations of Higher Order 

Liparit Tepoyan*<br>Yerevan State University, A. Manoogian str. 1, 0025, Yerevan, Armenia<br>(Received September 30, 2012; Revised October 23, 2013; Accepted December 12, 2013)


#### Abstract

This article deals with the Dirichlet problem for a degenerate nonself-adjoint differentialoperator equation of higher order. We prove existence and uniqueness of the generalized solution as well as establish some analogue of the Keldysh theorem for the corresponding one-dimensional equation.

Keywords: Differential equations in abstract spaces, Degenerate equations, Weighted Sobolev spaces, Spectral theory of linear operators.


AMS Subject Classification: 34G10, 34L05, 35J70, 46E35, 47E05.

## 1. Introduction

The main object of the present paper is the degenerate differential-operator equation

$$
\begin{equation*}
L u \equiv(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}+A\left(t^{\alpha-1} u^{(m)}\right)^{(m-1)}+P t^{\beta} u=f(t) \tag{1}
\end{equation*}
$$

where $m \in \mathbb{N}, t$ belongs to the finite interval $(0, b), \alpha \geq 0, \alpha \neq 1,3, \ldots, 2 m-1$, $\beta \geq \alpha-2 m, A$ and $P$ are linear operators (in general unbounded) in the separable Hilbert space $H, f \in L_{2,-\beta}((0, b), H)$, i.e.,

$$
\|f\|_{L_{2,-\beta}((0, b), H)}^{2}=\int_{0}^{b} t^{-\beta}\|f(t)\|_{H}^{2} d t<\infty
$$

We suppose that the operators $A$ and $P$ have common complete system of eigenfunctions $\left\{\varphi_{k}\right\}_{k=1}^{\infty}, A \varphi_{k}=a_{k} \varphi_{k}, P \varphi_{k}=p_{k} \varphi_{k}, k \in \mathbb{N}$, which form a Riesz basis in $H$, i.e., for any $x \in H$ there is a unique representation

$$
x=\sum_{k=1}^{\infty} x_{k} \varphi_{k}
$$

[^0]and there are constants $c_{1}, c_{2}>0$ such that
$$
c_{1} \sum_{k=1}^{\infty}\left|x_{k}\right|^{2} \leq\|x\|^{2} \leq c_{2} \sum_{k=1}^{\infty}\left|x_{k}\right|^{2}
$$

If $m=1$, the operator $A$ is a multiplication operator, $A u=a u, a \in \mathbb{R}, a \neq 0$ and $P u=-u_{x x}, x \in(0, c)$ then we obtain the degenerate elliptic operator in the rectangle $(0, b) \times(0, c)$. The dependence of the character of the boundary conditions with respect to $t$ for $t=0$ on the sign of the number $a$ was first observed by M.V. Keldish in [5] and next generalized by G. Jaiani in [4] (thus the statement of the boundary value problem depends on the "lower order" terms). The case $m=1, \beta=0,0 \leq \alpha<2$ was considered in [2], [6] (here $A=0$ ) and the case $m=2$, $\beta=0,0 \leq \alpha \leq 4$ in [8]. In [9] the self-adjoint case of higher order degenerate differential-operator equations for arbitrary $\alpha \geq 0, \alpha \neq 1,3, \ldots, 2 m-1$ has been considered.
Our approach is based on the consideration of the one-dimensional equation (1), when the operators $A$ and $P$ are multiplication operators by numbers a and p respectively, $A u=a u, P u=p u, a, p \in \mathbb{C}$ (see [3]).
Observe that this method suggested by A.A. Dezin (see [3]) has been used for the degenerate self-adjoint operator equation on the infinite interval $(1,+\infty)$ in [12] and with arbitrary weight function on the finite interval in [11].

## 2. One-dimensional case

### 2.1. Weighted Sobolev spaces $\dot{W}_{\alpha}^{m}(0, b)$

Let $C^{m}[0, b]$ denote the functions $u \in C^{m}[0, b]$, which satisfy the conditions

$$
\begin{equation*}
u^{(k)}(0)=u^{(k)}(b)=0, k=0,1, \ldots, m-1 \tag{2}
\end{equation*}
$$

Define $\dot{W}_{\alpha}^{m}(0, b)$ as the completion of $\dot{C}^{m}[0, b]$ in the norm

$$
\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}^{2}=\int_{0}^{b} t^{\alpha}\left|u^{(m)}(t)\right|^{2} d t
$$

Denote the corresponding scalar product in $\dot{W}_{\alpha}^{m}(0, b)$ by $\{u, v\}_{\alpha}=\left(t^{\alpha} u^{(m)}, v^{(m)}\right)$, where $(\cdot, \cdot)$ stands for the scalar product in $L_{2}(0 . b)$.
Note that the functions $u \in \dot{W}_{\alpha}^{m}(0, b)$ for every $t_{0} \in(\varepsilon, b], \varepsilon>0$ have the finite values $u^{(k)}\left(t_{0}\right), k=0,1, \ldots, m-1$ and $u^{(k)}(b)=0, k=0,1, \ldots, m-1$ (see [1]). For the proof of the following propositions we refer to [9] and [10].
Proposition 2.1: For the functions $u \in \dot{W}_{\alpha}^{m}(0, b), \alpha \neq 1,3, \ldots, 2 m-1$ we have the following estimates

$$
\begin{equation*}
\left|u^{(k)}(t)\right|^{2} \leq C_{1} t^{2 m-2 k-1-\alpha}\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}^{2}, k=0,1, \ldots, m-1 \tag{3}
\end{equation*}
$$

It follows from Proposition 2.1 that in the case $\alpha<1$ (weak degeneracy) $u^{(j)}(0)=0$ for all $j=0,1, \ldots, m-1$, while for $\alpha>1$ (strong degeneracy) not all $u^{(j)}(0)=0$.

More precisely, for $1<\alpha<2 m-1$ the derivatives at zero $u^{(j)}(0)=0$ only for $j=0,1, \ldots, s_{\alpha}$, where $s_{\alpha}=m-1-\left[\frac{\alpha+1}{2}\right]$ (here $[a]$ is the integral part of the $a$ ) and for $\alpha>2 m-1$ all $u^{(j)}(0), j=0,1, \ldots, m-1$ in general may be infinite.
Denote $L_{2, \beta}(0, b)=\left\{f, \int_{0}^{b} t^{\beta}|f(t)|^{2} d t<+\infty\right\}$. Observe that for $\alpha \leq \beta$ we have $L_{2, \alpha}(0, b) \subset L_{2, \beta}(0, b)$.
Proposition 2.2: For $\beta \geq \alpha-2 m$ we have a continuous embedding

$$
\begin{equation*}
\dot{W}_{\alpha}^{m}(0, b) \subset L_{2, \beta}(0, b), \tag{4}
\end{equation*}
$$

which is compact for $\beta>\alpha-2 m$.
Note that the embedding (4) in the case of $\beta=\alpha-2 m$ is not compact while for $\beta<\alpha-2 m$ it fails.
Denote $d(m, \alpha)=4^{-m}(\alpha-1)^{2}(\alpha-3)^{2} \cdots(\alpha-(2 m-1))^{2}$. In Proposition 2.2 using Hardy inequality (see [7]) it was proved that

$$
\begin{equation*}
\int_{0}^{b} t^{\alpha}\left|u^{(m)}(t)\right|^{2} d t \geq d(m, \alpha) \int_{0}^{b} t^{\alpha-2 m}|u(t)|^{2} d t \tag{5}
\end{equation*}
$$

Note that here $d(m, \alpha)$ is the exact number. Now it is easy to check that for $\beta \geq \alpha-2 m$

$$
\begin{equation*}
\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}^{2} \geq b^{\alpha-2 m-\beta} d(m, \alpha)\|u\|_{L_{2, \beta}(0, b)}^{2} . \tag{6}
\end{equation*}
$$

### 2.2. Nonself-adjoint degenerate equations

In this subsection we consider one-dimensional version of equation (1)

$$
\begin{equation*}
S u \equiv(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}+a\left(t^{\alpha-1} u^{(m)}\right)^{(m-1)}+p t^{\beta} u=f(t), \tag{7}
\end{equation*}
$$

where $\alpha \geq 0, \alpha \neq 1,3, \ldots, 2 m-1, \beta \geq \alpha-2 m, f \in L_{2,-\beta}(0, b), a \neq 0$ and $p$ are real constants.
Definition 2.3: A function $u \in \dot{W}_{\alpha}^{m}(0, b)$ is called a generalized solution of equation (7), if for arbitrary $v \in \dot{W}_{\alpha}^{m}(0, b)$ we have

$$
\begin{equation*}
\{u, v\}_{\alpha}+a(-1)^{m-1}\left(t^{\alpha-1} u^{(m)}, v^{(m-1)}\right)+p\left(t^{\beta} u, v\right)=(f, v) . \tag{8}
\end{equation*}
$$

Theorem 2.4: Let the following condition be fulfilled

$$
\begin{gather*}
a(\alpha-1)(-1)^{m}>0, \\
\gamma=b^{\alpha-2 m-\beta}\left(d(m, \alpha)+\frac{a}{2}(\alpha-1)(-1)^{m} d(m-1, \alpha-2)\right)+p>0 . \tag{9}
\end{gather*}
$$

Then the generalized solution of equation (7) exists and is unique for every $f \in L_{2,-\beta}(0, b)$.

Proof: Uniqueness. To prove the uniqueness of the solution we set in equality (8) $f=0$ and $v=u$. Let $\alpha>1$ (in the case $\alpha<1$ the proof is similar and we use
$\left.\left(t^{\alpha-1}\left|u^{(m-1)}(t)\right|^{2}\right)\right|_{t=0}=0$, which follows from Proposition 2.1). Then integrating by parts we obtain

$$
\left(t^{\alpha-1} u^{(m)}, u^{(m-1)}\right)=-\left.\frac{1}{2}\left(t^{\alpha-1}\left|u^{(m-1)}(t)\right|^{2}\right)\right|_{t=0}-\frac{\alpha-1}{2} \int_{0}^{b} t^{\alpha-2}\left|u^{(m-1)}(t)\right|^{2} d t .
$$

It follows from the inequality (3) for $k=m-1$ that the value $\left.\left(t^{\alpha-1}\left|u^{(m-1)}(t)\right|^{2}\right)\right|_{t=0}$ is finite. On the other hand, using inequality (5) we get

$$
\int_{0}^{b} t^{\alpha-2}\left|u^{(m-1)}(t)\right|^{2} d t \geq d(m-1, \alpha-2) \int_{0}^{b} t^{\alpha-2 m}|u(t)|^{2} d t .
$$

Hence using inequality (6) we obtain

$$
\begin{aligned}
& 0=\{u, u\}_{\alpha}+a(-1)^{m-1}\left(t^{\alpha-1} u^{(m)}, u^{(m-1)}\right)+p\left(t^{\beta} u, u\right) \\
& \quad \geq\left.\frac{a}{2}(-1)^{m}\left(t^{\alpha-1}\left|u^{(m-1)}(t)\right|^{2}\right)\right|_{t=0}+\gamma \int_{0}^{b} t^{\beta}|u(t)|^{2} d t
\end{aligned}
$$

Now uniqueness of the generalized solution follows from condition (9).
Existence. To prove the existence of the generalized solution define a linear functional $l_{f}(v)=(f, v), v \in \dot{W}_{\alpha}^{m}(0, b)$. From the continuity of the embedding (4) it follows that

$$
\left|l_{f}(v)\right| \leq\|f\|_{L_{2,-\beta}(0, b)}\|v\|_{L_{2, \beta}(0, b)} \leq c\|f\|_{L_{2,-\beta}(0, b)}\|v\|_{\dot{W}_{\alpha}^{m}(0, b)}
$$

therefore the linear functional $l_{f}(v)$ is bounded on $\dot{W}_{\alpha}^{m}(0, b)$. Hence it can be represented in the form $l_{f}(v)=(f, v)=\left\{u^{*}, v\right\}, u^{*} \in \dot{W}_{\alpha}^{m}(0, b)$ (this follows from the Riesz theorem on the representation of the linear continuous functional). The last two terms in the left hand-side of equality (8) also can be regarded as a continuous linear functional relative to $u$ and represented in the form $\{u, K v\}_{\alpha}, K v \in \dot{W}_{\alpha}^{m}(0, b)$. In fact, using inequality (5) we may write

$$
\begin{aligned}
\mid a(-1)^{m-1}\left(t^{\alpha-1} u^{(m)}, v^{(m-1)}\right) & +p\left(t^{\beta} u, v\right) \mid \\
& \leq\left|a\left(t^{\frac{\alpha}{2}} u^{(m)}, t^{\frac{\alpha}{2}-1} v^{(m-1)}\right)\right|+\left|p\left(t^{\frac{\beta}{2}} u, t^{\frac{\beta}{2}} v\right)\right| \\
& \leq c_{1}\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}\left\{\int_{0}^{b} t^{\alpha-2}\left|v^{(m-1)}(t)\right|^{2} d t\right\}^{1 / 2} \\
& +c_{2}\|u\|_{L_{2, \alpha-2 m}(0, b)}\|v\|_{L_{2, \alpha-2 m}(0, b)} \\
& \leq \frac{2 c_{1}}{|\alpha-1|}\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}\|v\|_{\dot{W}_{\alpha}^{m}(0, b)}+c_{3}\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}\|v\|_{\dot{W}_{\alpha}^{m}(0, b)} \\
& =c\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}\|v\|_{\dot{W}_{\alpha}^{m}(0, b)} .
\end{aligned}
$$

From equality (8) we deduce that for any $v \in \dot{W}_{\alpha}^{m}(0, b)$ we have

$$
\begin{equation*}
\{u,(I+K) v\}_{\alpha}=\left\{u^{*}, v\right\}_{\alpha} . \tag{10}
\end{equation*}
$$

Observe that the image of the operator $I+K$ is dense in $\dot{W}_{\alpha}^{m}(0, b)$. Indeed, if we have some $u_{0} \in \dot{W}_{\alpha}^{m}(0, b)$ such that

$$
\left\{u_{0},(I+K) v\right\}_{\alpha}=0
$$

for every $v \in \dot{W}_{\alpha}^{m}(0, b)$, we obtain $u_{0}=0$, since we have already proved uniqueness of the generalized solution for equation (7).
Assume that $0<\sigma d(m, \alpha) b^{\alpha-2 m-\beta} \leq \gamma$. Then we can write

$$
\begin{aligned}
\{u,(I+K) u\}_{\alpha} & \geq \sigma\{u, u\}_{\alpha}+\left(b^{\alpha-2 m-\beta}((1-\sigma) d(m, \alpha)\right. \\
& \left.\left.+\frac{a}{2}(\alpha-1)(-1)^{m} d(m-1, \alpha-2)\right)+p\right) \int_{0}^{b} t^{\beta}|u(t)|^{2} d t \\
& =\sigma\{u, u\}_{\alpha}+\left(\gamma-\sigma d(m, \alpha) b^{\alpha-2 m-\beta}\right) \int_{0}^{b} t^{\beta}|u(t)|^{2} d t \\
& \geq \sigma\{u, u\}_{\alpha}
\end{aligned}
$$

Finally we get

$$
\begin{equation*}
\{u,(I+K) u\}_{\alpha} \geq \sigma\{u, u\}_{\alpha} \tag{11}
\end{equation*}
$$

From (11) it follows that $(I+K)^{-1}$ is defined on $\dot{W}_{\alpha}^{m}(0, b)$ and is bounded. Consequently there exist operator $I+K^{*}$ and $\left(I+K^{*}\right)^{-1}=\left((I+K)^{-1}\right)^{*}$ (here $K^{*}$ means the adjoint operator). Hence from (10) we obtain

$$
u=\left(I+K^{*}\right)^{-1} u^{*}
$$

Define an operator $S: D(S) \subset \dot{W}_{\alpha}^{m}(0, b) \subset L_{2, \beta}(0, b) \rightarrow L_{2,-\beta}(0, b)$.
Definition 2.5: We say that $u \in \dot{W}_{\alpha}^{m}(0, b)$ belongs to $D(S)$ if there exists $f \in L_{2,-\beta}(0, b)$ such that equality (8) is fulfilled for every $v \in \dot{W}_{\alpha}^{m}(0, b)$. In this case we write $S u=f$.

The operator $S$ acts from the space $L_{2, \beta}(0, b)$ to $L_{2,-\beta}(0, b)$. It is easy to check that $\mathbb{S}:=t^{-\beta} S, D(\mathbb{S})=D(S), \mathbb{S}: L_{2, \beta}(0, b) \rightarrow L_{2, \beta}(0, b)$ is an operator in the space $L_{2, \beta}(0, b)$, since if $f \in L_{2,-\beta}(0, b)$ then $f_{1}:=t^{-\beta} f \in L_{2, \beta}(0, b)$ and $\|f\|_{L_{2,-\beta}(0, b)}=$ $\left\|f_{1}\right\|_{L_{2, \beta}(0, b)}$.
Proposition 2.6: Under the assumptions of Theorem 2.4 the inverse operator $\mathbb{S}^{-1}: L_{2, \beta}(0, b) \rightarrow L_{2, \beta}(0, b)$ is continuous for $\beta \geq \alpha-2 m$ and compact for $\beta>\alpha-2 m$.

Proof: For the proof first observe that for $u \in D(\mathbb{S})$ we have

$$
\|u\|_{L_{2, \beta}(0, b)} \leq c\|f\|_{L_{2,-\beta}(0, b)}=c\left\|f_{1}\right\|_{L_{2, \beta}(0, b)}
$$

In fact, setting $v=u$ in equality (8), using inequalities (6), (11) and applying
considerations of Theorem 2.4, we get

$$
\begin{aligned}
\sigma b^{\alpha-2 m-\beta} d(m, \alpha)\|u\|_{L_{2, \beta}(0, b)}^{2} & \leq \sigma d(m, \alpha)\|u\|_{\dot{W}_{\alpha}^{m}(0, b)}^{2} \\
& \leq\{(I+K) u, u\}_{\alpha}=(f, u) \\
& \leq\|f\|_{L_{2,-\beta}(0, b)}\|u\|_{L_{2, \beta}(0, b)} \\
& =\left\|f_{1}\right\|_{L_{2, \beta}(0, b)}\|u\|_{L_{2, \beta}(0, b)} .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\left\|\mathbb{S}^{-1} f_{1}\right\|_{L_{2, \beta}(0, b)} \leq c\left\|f_{1}\right\|_{L_{2, \beta}(0, b)} \tag{12}
\end{equation*}
$$

consequently the continuity of $\mathbb{S}^{-1}$ for $\beta \geq \alpha-2 m$ is proved. To show the compactness of $\mathbb{S}^{-1}$ for $\beta<\alpha-2 m$ it is enough to apply the compactness of the embedding (4) for $\beta<\alpha-2 m$.

Let us consider the following equation

$$
\begin{equation*}
T v \equiv(-1)^{m}\left(t^{\alpha} v^{(m)}\right)^{(m)}-a\left(t^{\alpha-1} v^{(m-1)}\right)^{(m)}+p t^{\beta} v=g(t) \tag{13}
\end{equation*}
$$

where $\alpha \geq 0, \alpha \neq 1,3, \ldots, 2 m-1, \beta \geq \alpha-2 m, g \in L_{2,-\beta}(0, b), a \neq 0$ and $p$ are real constants.

Definition 2.7: We say that $v \in L_{2, \beta}(0, b)$ is a generalized solution of equation (13), if for every $u \in D(S)$ the following equality holds

$$
\begin{equation*}
(S u, v)=(u, g) \tag{14}
\end{equation*}
$$

Let $g_{1}:=t^{-\beta} g$. Definition 2.7 of the generalized solution as above defines an operator $\mathbb{T}: L_{2, \beta}(0, b) \rightarrow L_{2, \beta}(0, b), \mathbb{T}:=t^{-\beta} T$. Actually we have defined the operator $\mathbb{T}$ as the adjoint to $\mathbb{S}$ operator in $L_{2, \beta}(0, b)$, i.e.,

$$
\mathbb{T}=\mathbb{S}^{*} .
$$

Theorem 2.8: Under the assumptions of Theorem 2.4 the generalized solution of equation (13) exists and is unique for every $g \in L_{2,-\beta}(0, b)$. Moreover, the inverse operator $\mathbb{T}^{-1}: L_{2, \beta}(0, b) \rightarrow L_{2, \beta}(0, b)$ is continuous for $\beta \geq \alpha-2 m$ and compact for $\beta>\alpha-2 m$.

Proof: Solvability of the equation $\mathbb{S} u=f_{1}$ for any $f_{1} \in L_{2,-\beta}(0, b)$ (see Theorem 2.4) implies uniqueness of the solution of equation (13), while existence of the bounded inverse operator $\mathbb{S}^{-1}$ (see Proposition 2.6) implies solvability of (13) for any $g \in L_{2,-\beta}(0, b)$ (see, for instance, [13]). Since we have $\left(\mathbb{S}^{*}\right)^{-1}=\left(\mathbb{S}^{-1}\right)^{*}$, boundedness and compactness of the operator $\mathbb{S}^{-1}$ imply boundedness and compactness of the operator $\mathbb{T}^{-1}$ for $\beta \geq \alpha-2 m$ and $\beta>\alpha-2 m$ respectively (see Proposition 2.6).

Remark 1: For $\alpha>1$ and for every generalized solution $v$ of equation (13) we
have

$$
\begin{equation*}
\left.\left(t^{\alpha-1}\left|u^{(m-1)}(t)\right|^{2}\right)\right|_{t=0}=0 \tag{15}
\end{equation*}
$$

In fact, replacing $g$ by $T v$ in equality (14), integrating by parts the second term and using equality (8) we obtain (15). Note also that for equation (7) the left-hand side of (15) is only bounded. This is some analogue of the Keldysh theorem (see [5]).

Remark 2: Note another interesting phenomenon connected with degenerate equations, namely appearing continuous spectrum. Assume that in equation (7) $a=p=0$ and $\beta=\alpha-2 m$. In [10] it was proved that the spectrum of the operator

$$
B u:=(-1)^{m} t^{2 m-\alpha}\left(t^{\alpha} u^{(m)}\right)^{(m)}, B: L_{2, \alpha-2 m}(0, b) \rightarrow L_{2, \alpha-2 m}(0, b)
$$

is purely continuous and coincides with the ray $[d(m, \alpha),+\infty)$. Note also that the spectrum of the operator $Q u:=(-1)^{m} t^{-\beta}\left(t^{\alpha} u^{(m)}\right)^{(m)}, Q: L_{2, \beta}(0, b) \rightarrow L_{2, \beta}(0, b)$ for $\beta>\alpha-2 m$ is discrete.

## 3. Dirichlet problem for degenerate differential-operator equations

In this section we consider the operator equation

$$
\begin{equation*}
L u \equiv(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}+A\left(t^{\alpha-1} u^{(m)}\right)^{(m-1)}+P t^{\beta} u=f(t) \tag{16}
\end{equation*}
$$

where $\alpha \geq 0, \alpha \neq 1,3, \ldots, 2 m-1, \beta \geq \alpha-2 m, A$ and $P$ are linear operators in the separable Hilbert space $H, f \in L_{2,-\beta}((0, b), H)$.
By assumption linear operators $A$ and $P$ have common complete system of eigenfunctions $\left\{\varphi_{k}\right\}_{k=1}^{\infty}, A \varphi_{k}=a_{k} \varphi_{k}, P \varphi_{k}=p_{k} \varphi_{k}, k \in \mathbb{N}$, which forms a Riesz basis in $H$, i.e., we can write

$$
\begin{equation*}
u(t)=\sum_{k=1}^{\infty} u_{k}(t) \varphi_{k}, \quad f(t)=\sum_{k=1}^{\infty} f_{k}(t) \varphi_{k} . \tag{17}
\end{equation*}
$$

Hence operator equation (16) can be decomposed into an infinite chain of ordinary differential equations

$$
\begin{equation*}
L_{k} u_{k} \equiv(-1)^{m}\left(t^{\alpha} u_{k}^{(m)}\right)^{(m)}+a_{k}\left(t^{\alpha-1} u_{k}^{(m)}\right)^{(m-1)}+p_{k} t^{\beta} u_{k}=f_{k}(t), k \in \mathbb{N} . \tag{18}
\end{equation*}
$$

It follows from the condition $f \in L_{2,-\beta}((0, b), H)$ that $f_{k} \in L_{2,-\beta}(0, b), k \in \mathbb{N}$. For one-dimensional equations (18) we can define the generalized solutions $u_{k}(t), k \in \mathbb{N}$ (see Section 2).

Definition 3.1: A function $u \in L_{2, \beta}((0, b), H)$ admitting representation

$$
u(t)=\sum_{k=1}^{\infty} u_{k}(t) \varphi_{k},
$$

where $u_{k}(t), k \in \mathbb{N}$ are the generalized solutions of the one-dimensional equations (18) is called a generalized solution of the operator equation (16).

Actually we have defined the operator $L$ as the closure of the differential operation $L(D)$ originally defined on all finite linear combinations of functions $u_{k}(t) \varphi_{k}, k \in \mathbb{N}$, where $u_{k} \in D\left(L_{k}\right)$.
The following result is a consequence of the general results of A.A. Dezin (see [3]).
Theorem 3.2: The operator equation (16) is uniquely solvable for every $f \in L_{2,-\beta}((0, b), H)$ if and only if the equations (18) are uniquely solvable for every $f_{k} \in L_{2,-\beta}(0, b), k \in \mathbb{N}$ and uniformly with respect to $k \in \mathbb{N}$

$$
\begin{equation*}
\left\|u_{k}\right\|_{L_{2, \beta}(0, b)} \leq c\left\|f_{k}\right\|_{L_{2,-\beta}(0, b)} . \tag{19}
\end{equation*}
$$

Theorems 2.4 and 2.8 shows us that a sufficient condition for relations (19) are the conditions

$$
\begin{equation*}
\gamma_{k}=b^{\alpha-2 m-\beta}\left(d(m, \alpha)+\frac{a_{k}}{2}(\alpha-1)(-1)^{m} d(m-1, \alpha-2)\right)+p_{k}>\varepsilon>0, k \in \mathbb{N} . \tag{20}
\end{equation*}
$$

Here we assume that $a_{k} \neq 0, a_{k}$ and $p_{k}$ are real for $k \in \mathbb{N}$. Thus we get the following result.

Theorem 3.3: Let the condition (20) be fulfilled. Then operator equation (16) has a unique generalized solution for every $f \in L_{2,-\beta}((0, b), H)$.

Proof: Since the system $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ forms a Riesz basis in $H$ then according to (19) we can write

$$
\begin{align*}
\|u\|_{L_{2, \beta}((0, b), H)}^{2} & =\int_{0}^{b} t^{\beta}\|u(t)\|_{H}^{2} d t \\
& \leq c_{1} \int_{0}^{b} t^{\beta} \sum_{k=1}^{\infty}\left|u_{k}(t)\right|^{2} d t  \tag{21}\\
& \leq c_{2} \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{L_{2,-\beta}(0, b)}^{2} \\
& \leq C\|f\|_{L_{2,-\beta}((0, b), H)} .
\end{align*}
$$

It follows from inequality (21) that the inverse operator $L^{-1}: L_{2,-\beta}((0, b), H) \rightarrow$ $L_{2, \beta}((0, b), H)$ is bounded for $\beta \geq \alpha-2 m$. In contrast to the one-dimensional case (see Proposition 2.6 and Theorem 2.8) this operator for $\beta>\alpha-2 m$ will not be compact (it will be a compact operator only in case when the space $H$ is finite-dimensional). The operator $L$ acts from the space $L_{2, \beta}((0, b), H)$ to the space $L_{2,-\beta}((0, b), H)$. As in one-dimensional case define an operator acting in the same space, which is necessary to explore spectral properties of the operators. Set $f=t^{\beta} g$. Then $\|f\|_{L_{2,-\beta}((0, b), H)}=\|g\|_{L_{2, \beta}((0, b), H)}$. Hence the operator $\mathbb{L}=t^{-\beta} L$ is an operator in the space $L_{2, \beta}((0, b), H)$. As a consequence of Theorem 3.3 we can state that $0 \in \rho(\mathbb{L})$, where $\rho(\mathbb{L})$ is the resolvent set of the operator $\mathbb{L}$.

Remark 1: The simplest example of the operators described in Introduction consists of the operators on the $n$-dimensional cube $V=[0,2 \pi]^{n}$, generated by differential expressions of the form

$$
L(-i D) u \equiv \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha} u
$$

with constant coefficients. Here $\alpha \in \mathbb{Z}_{+}^{n}$ is a multi-index. This class of operators is at the same time quite a large class. Let $\mathcal{P}^{\infty}$ be the set of smooth functions that are periodic in each variable. Let $s \in \mathbb{Z}^{n}$. To every differential operation $L(-i D)$ we can associate a polynomial $A(s)$ with constant coefficients such that

$$
A(-i D) e^{i s \cdot x}=A(s) e^{i s \cdot x}, \quad s \cdot x=s_{1} x_{1}+s_{2} x_{2}+\ldots+s_{n} x_{n}
$$

We define the corresponding operator $A: L_{2}(V) \rightarrow L_{2}(V)$ to be the closure in $L_{2}(V)$ of the differential operation $A(-i D)$ first defined on $\mathcal{P}^{\infty}$. Such operators are called $\Pi$-operators and have many interesting properties. The role of the functions $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ is played by the functions $e^{i s \cdot x}, s \in \mathbb{Z}^{n}$. For details see the book of A.A. Dezin [3].

## References

[1] V.I. Burenkov, Sobolev Spaces on Domains, Teubner, 1999
[2] A.A. Dezin, Degenerate operator equations, Mathematical Notes of the Academy of Sciences of the USSR, 43, 3 (1982), 287-298
[3] A.A. Dezin, Partial Differential Equations, An Introduction to a General Theory of Linear Boundary Value Problems, Springer, 1987
[4] G. Jaiani, On a generalization of the Keldysh theorem, Georgian Mathematical Journal, 2, 3 (1995), 291-297
[5] M.V. Keldysh, On certain cases of degeneration of equations of elliptic type on the boundary of a domain (Russian), Dokl. Akad. Nauk. SSSR, 77 (1951), 181-183
[6] V.V. Kornienko, On the spectrum of degenerate operator equations, Mathematical Notes, 68, 5 (2000), 576-587
[7] L.D. Kudryavtzev, On equivalent norms in the weight spaces (Russian), Trudy Mat. Inst. AN SSSR, 170 (1984), 161-190
[8] L. Tepoyan, Degenerate fourth-order differential-operator equations (Russian), Differential'nye Urawneniya, 23, 8 (1987), 1366-1376
[9] L. Tepoyan, On a degenerate differential-operator equation of higher order, Journal of Contemporary Mathematical Analysis, Matematika, 34, 5 (1999), 48-56
[10] L. Tepoyan, On the spectrum of a degenerate operator, Izvestiya Natsionalnoi Akademii Nauk Armenii, Matematika, 38, 5 (2003), 53-57
[11] L. Tepoyan, Degenerate differential-operator equations of higher order and arbitrary weight, AsianEuropean Journal of Mathematics (AEJM), 5, 2 (2012)
[12] L. Tepoyan, Degenerate differential-operator equations on infinite intervals, Journal of Mathematical Sciences, 189, 1 (2013), 164-172
[13] J. Weidmann, Lineare Operatoren in Hilberträumen, Teil 1, Grundlagen, Teubner Verlag, Stuttgart, 2000


[^0]:    * Email: tepoyan@yahoo.com

