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This article deals with the Dirichlet problem for a degenerate nonself-adjoint differential-
operator equation of higher order. We prove existence and uniqueness of the generalized
solution as well as establish some analogue of the Keldysh theorem for the corresponding
one-dimensional equation.

Keywords: Differential equations in abstract spaces, Degenerate equations, Weighted
Sobolev spaces, Spectral theory of linear operators.

AMS Subject Classification: 34G10, 34105, 35J70, 46E35, 47TE05.

1. Introduction

The main object of the present paper is the degenerate differential-operator equa-
tion

Lu = (1) (tu™) ™ 4 A (1) " L pefy = f(p), (1)

where m € N, t belongs to the finite interval (0,b), o > 0, # 1,3,...,2m — 1,
B > a—2m, A and P are linear operators (in general unbounded) in the separable
Hilbert space H, f € Ly _5((0,b), H), i.e.,

b
112, o = | PN dt < .

We suppose that the operators A and P have common complete system of eigen-
functions {pr}2,, Apr = arpr, Por = prer, k € N, which form a Riesz basis in
H, i.e., for any x € H there is a unique representation

o0
r= Y ng
k=1
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and there are constants ci, co > 0 such that

o0 oo
e Ykl < 2l < e2 Y ol
k=1 k=1

If m = 1, the operator A is a multiplication operator, Au = au,a € R, a # 0
and Pu = —ug,, © € (0,¢) then we obtain the degenerate elliptic operator in the
rectangle (0, b) x (0, ¢). The dependence of the character of the boundary conditions
with respect to ¢t for ¢ = 0 on the sign of the number a was first observed by
M.V. Keldish in [5] and next generalized by G. Jaiani in [4] (thus the statement
of the boundary value problem depends on the “lower order” terms). The case
m=1,8=0,0 < «a < 2 was considered in [2], [6] (here A = 0) and the case m = 2,
B =0,0<a<4in [8. In [9] the self-adjoint case of higher order degenerate
differential-operator equations for arbitrary a > 0, a # 1,3,...,2m — 1 has been
considered.

Our approach is based on the consideration of the one-dimensional equation (1),
when the operators A and P are multiplication operators by numbers a and p
respectively, Au = au, Pu = pu, a,p € C (see [3]).

Observe that this method suggested by A.A. Dezin (see [3]) has been used for the
degenerate self-adjoint operator equation on the infinite interval (1,+o0) in [12]
and with arbitrary weight function on the finite interval in [11].

2. One-dimensional case

2.1. Weighted Sobolev spaces W;”(O, b)

Let C™[0,b] denote the functions u € C™|0, b], which satisfy the conditions
u®0)=u®B)=0,k=0,1,...,m— 1. (2)

Define W (0,b) as the completion of C™[0,b] in the norm

b
ul)® :/ ™ (4)]2 dt.
[ ; [u™(t)]

Denote the corresponding scalar product in W;”(O, b) by {u,v}e = (t%ul™ v(m™),
where (-, -) stands for the scalar product in L2(0.b).

Note that the functions u € W2*(0,b) for every ty € (e,b], € > 0 have the finite
values u® (tg), k= 0,1,...,m — 1 and u® (b) = 0,k = 0,1,...,m — 1 (see [1]).
For the proof of the following propositions we refer to [9] and [10].

Proposition 2.1: For the functions u € WOC”(O, b),a # 1,3,...,2m — 1 we have
the following estimates

‘U(k)(t)yz < C1t2m72kilia||u||2' m(0,b)° k= 07 ]-7 sy M — 1. (3)

It follows from Proposition 2.1 that in the case o < 1 (weak degeneracy) u('j )(0)=0
for all j = 0,1,...,m — 1, while for & > 1 (strong degeneracy) not all u()(0) =0
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More precisely, for 1 < o < 2m — 1 the derivatives at zero u()(0) = 0 only for
j=0,1,...,84, where s, = m — 1 — [QT‘H] (here [a] is the integral part of the a)
and for a > 2m — 1 all u9)(0), j = 0,1,...,m — 1 in general may be infinite.
Denote L 3(0,b) = {f, féj o1 f (1) dt < —i—oo}. Observe that for a < 8 we have
L2, (0,b) C Ly (0,b).

Proposition 2.2: For 8 > a — 2m we have a continuous embedding

W (0,b) C L2 5(0,0), (4)

which is compact for 5 > a — 2m.

Note that the embedding (4) in the case of § = a — 2m is not compact while for
B < a—2m it fails.

Denote d(m,a) = 4™ (a—1)?(a—3)%--- (a— (2m —1))2. In Proposition 2.2 using
Hardy inequality (see [7]) it was proved that

b b
/ ™ (D2 dt > d(m, o) / 19=2m )y ()2 d (5)
0 0

Note that here d(m,«) is the exact number. Now it is easy to check that for
B>a—2m

lllfy gy = 0% Pd(m, @) [[ull?, ,0.)- (6)
2.2. Nomnself-adjoint degenerate equations

In this subsection we consider one-dimensional version of equation (1)

Su = (—1)™ (£2um) ™ 4 g (e Lum) D 4 peBy = f(1), (7)
where o > 0,0 # 1,3,...,2m —1, 8 > a —2m, f € Ly _3(0,b), a # 0 and p are
real constants.

Definition 2.3: A function u € W(0,b) is called a generalized solution of equa-
tion (7), if for arbitrary v € W2*(0,b) we have

{0} +a(=1)" (¢ ul™ V) 4 p(tPu,0) = (f,0). (8)
Theorem 2.4: Let the following condition be fulfilled

ala —1)(—=1)™ >0,

v = 62728 (d(m, a)+%(a —1)(=1)"d(m — 1,a — 2)) +p > 0. ©)

Then the generalized solution of equation (7) exists and is unique for every
fe L27_5(0, b).

Proof: Uniqueness. To prove the uniqueness of the solution we set in equality (8)
f=0and v = u. Let a > 1 (in the case a < 1 the proof is similar and we use
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(t*=Hum=D(#)[2) |;=o = 0, which follows from Proposition 2.1). Then integrating
by parts we obtain

a=1.(m) . (m=1)\ _ L a1 (m=1)p2 ~a—1 ba72 (m=1) (412 4
(17, w0 0) = = (VO oo — F 5 [

It follows from the inequality (3) for k = m—1 that the value (t*~* lum=1)(¢) 12) =0
is finite. On the other hand, using inequality (5) we get

b b
/ 2D (@) 2 dt > dim — 1,0 — 2)/ t72m () |2 dt.
0 0

Hence using inequality (6) we obtain
0= {u’ u}a+a(_1)m—1 (ta—lu(m)’ u(m—l)) + p(tﬁu’ U)

b
>0 DO o+ [ Pt b

0
Now uniqueness of the generalized solution follows from condition (9).
FEzistence. To prove the existence of the generalized solution define a linear func-
tional If(v) = (f,v),v € W[ (0,b). From the continuity of the embedding (4) it
follows that

L) < [fllra_som10l2s s00) < lfllrs s p)10liirm o5

therefore the linear functional l;(v) is bounded on W (0,b). Hence it can be
represented in the form Ip(v) = (f,v) = {u*,v},u* € W2(0,b) (this follows
from the Riesz theorem on the representation of the linear continuous func-
tional). The last two terms in the left hand-side of equality (8) also can be re-
garded as a continuous linear functional relative to u and represented in the form
{u, Kv}q, Kv € W2(0,b). In fact, using inequality (5) we may write

la(—1)™ (2L M= D) (P, v)]

S\a(t%u(m), tgflv(mfl))] + |p(t§u, tgv)\

b
SclHUHWy(O,b) {/0 ta72‘v(m71)(t)‘2 dt}

+eallullz, o o0 1Vl 2s s (0,8)

1/2

201
St os

[llyirzn 0,y + €allellvirm 0,0 IVl 0.0
=cllullyip o0 1/l 0.)
From equality (8) we deduce that for any v € W/(0,b) we have

{u,(I + K)v}q = {u",v}q. (10)
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Observe that the image of the operator I + K is dense in W (0,b). Indeed, if we
have some ug € W2*(0,b) such that

{up,(I + K)v}o =0

for every v € Wg‘(O, b), we obtain ug = 0, since we have already proved uniqueness
of the generalized solution for equation (7).
Assume that 0 < od(m,a)b* ?™=8 < . Then we can write

{u, (I + K)u}o > oc{u,utq + (bo‘*Qm*B((l —o)d(m,a)

a b
+5(a=1)(=1)"d(m —1,a - 2)) +p) /0 tPlu(t)|? dt

= o{u,u}a + (v — od(m, a)b*~2m"P) /Ob tPlu(t))? dt
> of{u,u}lq.
Finally we get
{u, (I + K)u}o > o{u, ulq. (11)

From (11) it follows that (I + K)~! is defined on W/™(0,b) and is bounded. Con-
sequently there exist operator I + K* and (I + K*)™! = (I + K)™Y)* (here K*
means the adjoint operator). Hence from (10) we obtain

uw=(I+ K" tu*.

Define an operator S : D(S) € W2*(0,b) C L 5(0,b) — Lo _5(0,b).

Definition 2.5: We say that u € W™(0,b) belongs to D(S) if there exists
f € Ly _5(0,b) such that equality (8) is fulfilled for every v € W2*(0,b). In this
case we write Su = f.

The operator S acts from the space Lg g(0,b) to Ly _5(0,b). It is easy to check that
S :=t7P5,D(8) = D(S), S : Ly5(0,b) — L25(0,b) is an operator in the space
Ly 5(0,b), since if f € Ly _5(0,b) then f := tPfe Ly 5(0,b) and ||f”L2,_ﬁ(0,b) =
11l 5 (0,6)-

Proposition 2.6: Under the assumptions of Theorem 2.4 the inverse operator
S71: Lag(0,b) — Log(0,b) is continuous for B > o — 2m and compact for
8> a—2m.

Proof: For the proof first observe that for u € D(S) we have

lullz, s00) < ellfllza_s00) = cllfill L, a08)-

In fact, setting v = u in equality (8), using inequalities (6), (11) and applying
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considerations of Theorem 2.4, we get

ob* 2" d(m, a)llullf, o < odim, a)||u||3v‘;n(0,b)
<H{U + K)u,u}o = (f,u)
<Nl _s0py 1wl Ly 4 0,8)

= 1f1lls sop) 1wl Ly 40,0)-

Thus we obtain

157 fill ks s 0) < €l fill L (0.0)5 (12)

consequently the continuity of 7! for 3 > a—2m is proved. To show the compact-
ness of 57! for B < av—2m it is enough to apply the compactness of the embedding
(4) for f < a—2m. O

Let us consider the following equation
Tv=(—-1)" (tav(m))(m) - a(taflv(mfl))(m) + pto = g(t), (13)

where o > 0,0 # 1,3,...,.2m — 1, 8 > a—2m, g € Ly _3(0,b), a # 0 and p are
real constants.

Definition 2.7: We say that v € Ly 53(0,b) is a generalized solution of equation
(13), if for every u € D(S) the following equality holds

(Su,v) = (u, 9)- (14)

Let g1 := tPg. Definition 2.7 of the generalized solution as above defines an
operator T : Ly 5(0,b) — L2g(0,b), T := t=BT. Actually we have defined the
operator T as the adjoint to S operator in Ly 5(0,b), i.e.,

T=5"

Theorem 2.8: Under the assumptions of Theorem 2.4 the generalized solution of
equation (13) exists and is unique for every g € Ly _5(0,b). Moreover, the inverse
operator T™1 : Ly 5(0,b) — Lo 5(0,b) is continuous for B > o — 2m and compact
for B> a —2m.

Proof: Solvability of the equation Su = f; for any fi € La_3(0,b) (see Theo-
rem 2.4) implies uniqueness of the solution of equation (13), while existence of the
bounded inverse operator S~! (see Proposition 2.6) implies solvability of (13) for
any g € Lo _5(0,b) (see, for instance, [13]). Since we have (5*)~! = (571)*, bound-
edness and compactness of the operator S~! imply boundedness and compactness
of the operator T~! for 8 > a — 2m and B > a — 2m respectively (see Proposition
2.6). O

Remark 1: For a > 1 and for every generalized solution v of equation (13) we
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have
(= D (@)2) = = 0. (15)

In fact, replacing g by T in equality (14), integrating by parts the second term and
using equality (8) we obtain (15). Note also that for equation (7) the left-hand side
of (15) is only bounded. This is some analogue of the Keldysh theorem (see [5]).

Remark 2: Note another interesting phenomenon connected with degenerate
equations, namely appearing continuous spectrum. Assume that in equation (7)
a=p=0and 8 =a—2m. In [10] it was proved that the spectrum of the operator

Bu = (—1)"2(t°u™) "™ B Ly o 9n(0,b) = Loa2m(0,1)
is purely continuous and coincides with the ray [d(m, «),+00). Note also that the
spectrum of the operator Qu := (—1)"t P (t*ul™)(™) Q : Ly 5(0,b) — L3 5(0,b)
for 8 > a — 2m is discrete.
3. Dirichlet problem for degenerate differential-operator equations

In this section we consider the operator equation
Lu = (—1)™ (t2u™) ™ 4 A (o1 (m) "D L piBy, = f (1), (16)

where a > 0,0 # 1,3,....2m — 1, 8 > a— 2m, A and P are linear operators in
the separable Hilbert space H, f € Ly _5((0,b), H).

By assumption linear operators A and P have common complete system of eigen-
functions {¢i}32, Apr = arpr, Por = pryr, k € N, which forms a Riesz basis in
H, ie., we can write

u(t) =D ur®ers () = frlt)er. (17)
k=1 k=1

Hence operator equation (16) can be decomposed into an infinite chain of ordinary
differential equations

m(yo, (M m a— m)\ (m—1
Liu = (—1)™ (£2u{™) ™ 4 a (127 1u™) " 4ty = fo(8), k€N, (18)
It follows from the condition f € Ly _5((0,b), H) that f; € Ly _5(0,b),k € N. For

one-dimensional equations (18) we can define the generalized solutions uy(t),k € N
(see Section 2).

Definition 3.1: A function u € Ly g((0,b), H) admitting representation

u(t) =Y uk(t)er,
k=1
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where ug(t), k € N are the generalized solutions of the one-dimensional equations
(18) is called a generalized solution of the operator equation (16).

Actually we have defined the operator L as the closure of the differential operation
L(D) originally defined on all finite linear combinations of functions ug (t)¢g, k € N,
where uy, € D(Ly).

The following result is a consequence of the general results of A.A. Dezin (see [3]).

Theorem 3.2: The operator equation (16) is wuniquely solvable for every
f € Ly _p((0,b), H) if and only if the equations (18) are uniquely solvable for every
fr € La_5(0,0),k € N and uniformly with respect to k € N

Nkl 2,00 < cllfrllr, s (19)

Theorems 2.4 and 2.8 shows us that a sufficient condition for relations (19) are the
conditions

Ye = b2 (d(m, a)+a—2k(a—1)(—1)md(m—1,a—Z)) +pr >e>0keN. (20)

Here we assume that ap # 0, ar and py are real for k € N. Thus we get the following
result.

Theorem 3.3: Let the condition (20) be fulfilled. Then operator equation (16)
has a unique generalized solution for every f € Lo _g((0,b), H).

Proof: Since the system {¢}}?° | forms a Riesz basis in H then according to (19)
we can write

b
Il omn = | Oy

b 00
Scl/ 0 " Jug () dt
0 k=1

(21)
S CQ Z ‘|fk”%2,_[3(0)b)
k=1

S CHfHLz—[i((Ovb):H)'

d

It follows from inequality (21) that the inverse operator L™ : Ly _5((0,b), H) —
Ly 5((0,b), H) is bounded for f > o — 2m. In contrast to the one-dimensional
case (see Proposition 2.6 and Theorem 2.8) this operator for 5 > a — 2m will
not be compact (it will be a compact operator only in case when the space H
is finite-dimensional). The operator L acts from the space Ly 5((0,b), H) to the
space Ly _5((0,b), H). As in one-dimensional case define an operator acting in the
same space, which is necessary to explore spectral properties of the operators. Set
f = t%g. Then 1 zs. s 00), ) = 19Nl 2s (0,0, 5)- Hence the operator L = t=PL is
an operator in the space Ly 3((0,b), H). As a consequence of Theorem 3.3 we can
state that 0 € p(L), where p(L) is the resolvent set of the operator L.
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Remark 1: The simplest example of the operators described in Introduction
consists of the operators on the n-dimensional cube V' = [0,27]", generated by
differential expressions of the form

L(—iD)u = Z aaD%u

|| <m

with constant coefficients. Here o € 7"} is a multi-index. This class of operators is
at the same time quite a large class. Let P> be the set of smooth functions that
are periodic in each variable. Let s € Z". To every differential operation L(—iD)
we can associate a polynomial A(s) with constant coefficients such that

A(fiD)eis'm = A(s)eis'x, ST =810 + SoTo + ...+ SpTn.

We define the corresponding operator A : La(V) — La(V) to be the closure in
Lo(V) of the differential operation A(—iD) first defined on P>°. Such operators are
called II-operators and have many interesting properties. The role of the functions
{or}2, is played by the functions e*®, s € Z". For details see the book of A.A.
Dezin [3].
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