Quarter-Symmetric Non-Metric Connection on Pseudosymmetric Kenmotsu Manifolds

C. Patra ${ }^{a}$ and A. Bhattacharyya ${ }^{b}$
${ }^{a}$ Assistant Professor in Mathematics, Govt. Degree College, Kamalpur, Dhalai, Tripura,India. patrachinmoy@yahoo.co.in
${ }^{b}$ Reader, Department of Mathematics, Jadavpur University, Kolkata-700032, W.B., India. aribh22@hotmail.com
(Received September 9, 2012; Revised May 20, 2013; Accepted June 27, 2013)

Abstract

In this paper we shall introduce a quarter-symmetric non-metric connection in a pseudosymmetric Kenmotsu manifold and find out some of its properties. We shall show the existence of quarter-symmetric non-metric connection on Kenmotsu manifold. Also we state the definitions of Weyl-pseudosymmetric Kenmotsu manifold and Ricci pseudosymmetric Kenmotsu manifold with respect to quarter-symmetric non-metric connection. Next we show some results on Weyl-pseudosymmetric Kenmotsu manifold and partially Ricci pseudosymmetric Kenmotsu manifold with respect to quarter-symmetric non-metric connection and η-Einstein manifold. At the end we show an example of pseudosymmetric Kenmotsu manifold with respect to quarter-symmetric non-metric connection.

Keywords: Kenmotsu manifold, Quarter-Symmetric Non-Metric connection,
Pseudosymmetric Kenmotsu Manifolds, Weyl-pseudosymmetric, Ricci pseudosymmetric.
AMS Subject Classification: 53C05, 53C15, 53D15.

1. Introduction

In 1987, M.C. Chaki and B. Chaki [11] studied pseudosymmetric manifolds with semisymmetric connection and many authors studied properties on this manifold. Also R. Deszcz et. al. studied Ricci-pseudosymmetric manifolds and pseudosymmetric manifolds [2], [3], [6], [7]. The conceptions of pseudosymmetric manifold are different with the above authors. In 2008, C. S. Bagewadi and et. al. studied pseudosymmetric Lorentzian α-Sasakian manifolds in the Deszcz sense [10]. We shall study the properties of pseudosymmetric Kenmotsu manifolds and Ricccipseudosymmetric Kenmotsu manifolds with respect to quarter-symmetric nonmetric connection in the Deszcz sense.

A Riemannian manifold (M, g) of dimension n is called pseudosymmetric if the Riemannian curvature tensor R satisfies the conditions [1], [4], [7]

$$
\begin{equation*}
\text { 1. } \quad(R(X, Y) \cdot R)(U, V, W)=L_{R}[((X \wedge Y) \circ R)(U, V, W)] \tag{1}
\end{equation*}
$$

[^0]for all vector fields X, Y, U, V, W on M, where $L_{R} \in C^{\infty}(M), R(X, Y) Z=$ $\nabla_{[X, Y]} Z-\left[\nabla_{X}, \nabla_{Y}\right] Z$ and $X \wedge Y$ is an endomorphism defined by
\[

$$
\begin{equation*}
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y \tag{2}
\end{equation*}
$$

\]

2. $\quad(R(X, Y) \cdot R)(U, V, W)=R(X, Y)(R(U, V) W)$

$$
\begin{equation*}
-R(R(X, Y) U, V) W-R(U, R(X, Y) V) W-R(U, V)(R(X, Y) W) \tag{3}
\end{equation*}
$$

3. $\quad((X \wedge Y) \cdot R)(U, V, W)=(X \wedge Y)(R(U, V) W)$

$$
\begin{equation*}
-R((X \wedge Y) U, V) W-R(U,(X \wedge Y) V) W-R(U, V)((X \wedge Y) W) \tag{4}
\end{equation*}
$$

M is said to be pseudosymmetric of constant type if L is constant. A Riemannian manifold (M, g) is called quarter-symmetric if $R . R=0$, where $R . R$ is the derivative of R by R.

Remark 1 : From [4], [5] we know that the $(0, k+2)$ tensor fields $R . T$ and $Q(g, T)$ are defined by

$$
\begin{aligned}
& (R . T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=(R(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right) \\
& \quad=-T\left(R(X, Y) X_{1}, \ldots, X_{k}\right)-\ldots-T\left(X_{1}, \ldots, R(X, Y) X_{k}\right) \\
& Q(g, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=-((X \wedge Y) . T)\left(X_{1}, \ldots, X_{k}\right) \\
& \quad=T\left((X \wedge Y) X_{1}, \ldots, X_{k}\right)+\ldots+T\left(X_{1}, \ldots,(X \wedge Y) X_{k}\right), \text { where } T \text { is a }(0, k)
\end{aligned}
$$

tensor field.
Let S and r denote the Ricci tensor and the scalar curvature tensor of M respectively. The operator Q and the $(0,2)$-tensor S^{2} are defined by

$$
\begin{equation*}
S(X, Y)=g(Q X, Y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S^{2}(X, Y)=S(Q X, Y) \tag{6}
\end{equation*}
$$

The Weyl conformal curvature operator C is defined by

$$
\begin{equation*}
C(X, Y)=R(X, Y)-\frac{1}{n-2}\left[X \wedge Q Y+Q X \wedge Y-\frac{r}{n-1} X \wedge Y\right] \tag{7}
\end{equation*}
$$

If $C=0, n \geq 4$ then M is called conformally flat. If the tensor $R . C$ and $Q(g, C)$ are linearly dependent then M is called Weyl-pseudosymmetric. This is equivalent to

$$
\begin{equation*}
R . C(U, V, W ; X, Y)=L_{C}[((X \wedge Y) \cdot C)(U, V) W] \tag{8}
\end{equation*}
$$

holds on the set $U_{C}=\{x \in M: C \neq 0$ at $x\}$, where L_{C} is defined on U_{C}. If $R . C=0$, then M is called Weyl-semi-symmetric. If $\nabla C=0$, then M is called conformally symmetric [10].

2. Preliminaries:

Let M be an almost contact metric manifold of dimension $2 n+1$ with an almost contact metric structure (ϕ, ξ, η, g) where ϕ is $(1,1)$ tensor field, ξ is a contravariant vector field, η is a 1 -form and g is an associated Riemannian metric such that,

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi \tag{9}\\
\eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0 \tag{10}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{12}
\end{equation*}
$$

$\forall \quad X, \quad Y \in \chi(M)$, then M is called a Kenmotsu manifold provided,

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=-g(X, \phi Y) \xi-\eta(Y) \phi X \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\nabla_{X} \xi=X-\eta(X) \xi\right) \tag{14}
\end{equation*}
$$

holds, where ∇ is affine connection on M [8], [9].
On a Kenmotsu manifold, it can be shown that

$$
\begin{align*}
& \left(\nabla_{X} \eta\right) Y=g(\phi X, \phi Y) \tag{15}\\
& F(X, Y)=-F(Y, X) \tag{16}
\end{align*}
$$

where $F(X, Y)=g(\phi X, Y)$, is a fundamental 2-form.
Further on a Kenmotsu manifold the following relations hold, [8]

$$
\begin{gather*}
\eta(R(X, Y) Z)=g(X, Z) \eta(Y)-g(Y, Z) \eta(X) \tag{17}\\
R(\xi, X) Y=\eta(Y) X-g(X, Y) \xi \tag{18}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \tag{19}\\
S(\xi, X)=S(X, \xi)=-2 n \eta(X) \tag{20}
\end{gather*}
$$

$$
\begin{equation*}
Q \xi=-2 n \xi \tag{21}
\end{equation*}
$$

3. Quarter-symmetric non-metric connection on Kenmotsu manifold:

Let M be a Kenmotsu manifold with Levi-Civita connection ∇ and $X, Y \in \chi(M)$. We define a linear connection D on M by

$$
\begin{equation*}
D_{X} Y=\nabla_{X} Y+\eta(Y) \phi(X) \tag{22}
\end{equation*}
$$

where η is a 1 -form and ϕ is a tensor field of type $(1,1) . D$ is said to be quarter symmetric connection if \bar{T}, the torsion tensor with respect to the connection D, satisfies

$$
\begin{equation*}
\bar{T}(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{23}
\end{equation*}
$$

D is said to be non-metric connection if $(D g) \neq 0$. Using (16) we have

$$
\begin{equation*}
\left(D_{X} g\right)(Y, Z)=-\{\eta(Y) g(\phi X, Z)+\eta(Z) g(\phi X, Y)\} \tag{24}
\end{equation*}
$$

A linear connection D is said to be a quarter-symmetric non-metric connection if it satisfies (22), (23) and (24).

Now we shall show the existence of the quarter-symmetric non-metric connection D on a Kenmotsu manifold M.

Theorem 3.1: Let X, Y, Z be any vectors fields on a Kenmotsu manifold M with an almost structure (ϕ, ξ, η, g). Let us define a connection D by $2 g\left(D_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)$

$$
\begin{align*}
& +g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y) \\
& +g(\eta(Y) \phi X-\eta(X) \phi Y, Z)+g(\eta(X) \phi Z \\
& -\eta(Z) \phi X, Y)+g(\eta(Y) \phi Z+\eta(Z) \phi Y, X) \tag{25}
\end{align*}
$$

Then D is a quarter-symmetric non-metric connection on M.
Proof: It can be verified that $D:(X, Y) \rightarrow D_{X} Y$ satisfies the following equations:

$$
\begin{gather*}
D_{X}(Y+Z)=D_{X} Y+D_{X} Z \tag{26}\\
D_{X+Y} Z=D_{X} Z+D_{Y} Z \tag{27}\\
D_{f X} Y=f D_{X} Y \tag{28}\\
D_{X}(f Y)=f\left(D_{X} Y\right)+(X f) Y \tag{29}
\end{gather*}
$$

for all $X, Y, Z \in \chi(M)$ and for all f, all differentiable functions on M.
From (26), (27), (28) and (29) we can conclude that D is a linear connection on M. From (25) we have,
$D_{X} Y-D_{Y} X-[X, Y]=\eta(Y) \phi X-\eta(X) \phi Y$
or,

$$
\begin{equation*}
\bar{T}(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{30}
\end{equation*}
$$

Again from (25) we get,
$2 g\left(D_{X} Y, Z\right)+2 g\left(D_{X} Z, Y\right)$

$$
\begin{gather*}
=2 X g(Y, Z)+2 \eta(Y) g(\phi X, Z)+2 \eta(Z) g(\phi X, Y) \\
\left(D_{X} g\right)(Y, Z)=-\{\eta(Y) g(\phi X, Z)+\eta(Z) g(\phi X, Y)\} \tag{31}
\end{gather*}
$$

This shows that D is a quarter-symmetric non-metric connection on M.

Theorem 3.2: Let D be a linear connection on a Kenmotsu manifold M, given by

$$
\begin{equation*}
D_{X} Y=\nabla_{X} Y+H(X, Y) \tag{32}
\end{equation*}
$$

where $H(X, Y)$ is a $(1,2)$ tensor field and ∇ is Levi-Civita connection, satisfying (24). Then $H(X, Y)=\eta(Y) \phi(X)$.

Proof: Using (32) in the definition of torsion tensor, we get

$$
\begin{equation*}
\bar{T}(X, Y)=H(X, Y)-H(Y, X) \tag{33}
\end{equation*}
$$

From (32), we have

$$
\begin{equation*}
g(H(X, Y), Z)+g(H(X, Z), Y)=-\left(D_{X} g\right)(Y, Z) \tag{34}
\end{equation*}
$$

From (24), (32), (33) and (34) we have

$$
\begin{aligned}
& g(\bar{T}(X, Y), Z)+g(\bar{T}(Z, Y), X)+g(\bar{T}(Z, X), Y) \\
& \quad=2 g(H(X, Y), Z)-\left(D_{Z} g\right)(X, Y)+\left(D_{Y} g\right)(X, Z)+\left(D_{X} g\right)(Y, Z)
\end{aligned}
$$

We get from the above equation,
$g(H(X, Y), Z)=\frac{1}{2}[g(\bar{T}(X, Y), Z)+g(\bar{T}(Z, Y), X)$

$$
+g(\bar{T}(Z, X), Y)]+[\eta(Y) g(\phi X, Z)+\eta(X) g(\phi Y, Z)]
$$

Thus, we get
$H(X, Y)=\frac{1}{2}[\bar{T}(X, Y)+\tilde{T}(X, Y)+\tilde{T}(Y, X)]+[\eta(Y) \phi X+\eta(X) \phi Y]$,
where \tilde{T} is a tensor field of type $(1,2)$ defined by

$$
g(\tilde{T}(X, Y), Z)=g(\bar{T}(Z, X), Y)
$$

Thus $H(X, Y)=\eta(Y) \phi X$.
Hence $D_{X} Y=\nabla_{X} Y+\eta(Y) \phi X$.
4. Curvature tensor and Ricci tensor with respect to quarter-symmetric non-metric connection D in a Kenmotsu manifold

Let $\bar{R}(X, Y) Z$ and $R(X, Y) Z$ be the curvature tensors on a Kenmotsu manifold M with respect to the quarter-symmetric non-metric connection D and with respect to the Riemannian connection ∇ respectively. A relation between the curvature tensors of M with respect to the quarter-symmetric non-metric connection D and the Riemannian connection ∇ is given by
$\bar{R}(X, Y) Z=R(X, Y) Z+2 \eta(Z) g(\phi X, Y) \xi$

$$
\begin{equation*}
+g(X, Z) \phi Y-g(Y, Z) \phi X \tag{35}
\end{equation*}
$$

Also from (35) we obtain

$$
\begin{equation*}
\bar{S}(X, Y)=S(X, Y)+g(\phi X, Y) \tag{36}
\end{equation*}
$$

where \bar{S} and S are the Ricci tensors of the connections D and ∇ respectively. Contracting (36), we get

$$
\begin{equation*}
\bar{r}=r \tag{37}
\end{equation*}
$$

where \bar{r} and r are the scalar curvature with respect to the connection D and ∇ respectively.

Let \bar{C} be the conformal curvature tensors on Kenmotsu manifolds with respect to the connections D. Then

$$
\begin{align*}
& \bar{C}(X, Y) Z=\bar{R}(X, Y) Z-\frac{1}{n-2}[\bar{S}(Y, Z) X-g(X, Z) \bar{Q} Y+g(Y, Z) \bar{Q} X \\
&-\bar{S}(X, Z) Y]+\frac{\bar{r}}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y] \tag{38}
\end{align*}
$$

where \bar{Q} is the Ricci operator with the connection D on M and

$$
\begin{align*}
& \bar{S}(X, Y)=g(\bar{Q} X, Y), \tag{39}\\
& \bar{S}^{2}(X, Y)=\bar{S}(\bar{Q} X, Y) \tag{40}
\end{align*}
$$

Now we shall prove the following theorem.
Theorem 4.1: Let M be a Kenmotsu manifold with respect to the quartersymmetric non-metric connection D, then the following relations hold:

$$
\begin{gather*}
\bar{R}(\xi, X) Y=\eta(Y) X-g(X, Y) \xi+\eta(Y) \phi X \tag{41}\\
\eta(\bar{R}(X, Y) Z)=g(X, Z) \eta(Y)-g(Y, Z) \eta(X)+2 g(\phi X, Y) \eta(Z) \tag{42}
\end{gather*}
$$

$$
\begin{gather*}
\bar{R}(X, Y) \xi=\eta(X) Y-\eta(Y) X-\eta(Y) \phi X+\eta(X) \phi Y+2 g(\phi X, Y) \xi, \tag{43}\\
\bar{S}(X, \xi)=\bar{S}(\xi, X)=-2 n \eta(X), \tag{44}\\
\bar{Q} X=Q X+\phi X, \tag{45}\\
\bar{S}^{2}(X, \xi)=\bar{S}^{2}(\xi, X)=4 n^{2} \eta(X), \tag{46}\\
\bar{Q} \xi=-2 n \xi . \tag{47}
\end{gather*}
$$

Proof: Since M is a Kenmotsu with respect to the quarter-symmetric non-metric connection D,
then replacing $X=\xi$ in (35) and using (10) and (18) we get (41).
Using (10) and (17), from (35) we get (42).
To prove (43), we put $Z=\xi$ in (35) and then we use (19).
Replacing $Y=\xi$ in (36) and using (20) we get (44).
Using (36) and (39) we get (45).
Using (40), (44) and (45) we get (46).
Putting $X=\xi$ in (45) we obtain (47).
5. Kenmotsu manifold with respect to the quarter-symmetric non-metric connection D satisfying the condition $\bar{C} \cdot \bar{S}=0$.

In this section we shall find out the characterization of Kenmotsu manifold with respect to the quarter-symmetric non-metric connection D satisfying the condition $\bar{C} \cdot \bar{S}=0$.
We define $\bar{C} \cdot \bar{S}=0$ on M by

$$
\begin{equation*}
(\bar{C}(X, Y) \cdot \bar{S})(Z, W)=-\bar{S}(\bar{C}(X, Y) Z, W)-\bar{S}(Z, \bar{C}(X, Y) W) \tag{48}
\end{equation*}
$$

where $X, Y, Z, W \in \chi(M)$.
Theorem 5.1: Let M be a Kenmotsu manifold with respect to the quartersymmetric non-metric connection D. If $\bar{C} \cdot \bar{S}=0$, then

$$
\begin{align*}
\bar{S}^{2}(X, Y)=-\left\{\frac{r}{(n-1)}\right. & \left.+n-2\} \bar{S}(X, Y)+2 n\left\{\frac{r}{n-1}+n+2\right\} g(X, Y)\right] \\
- & 2 n(2 n-1) \eta(X) \eta(Y)-(n-2) \bar{S}(\phi X, Y) \tag{49}
\end{align*}
$$

Proof: Let us consider M to be a Kenmotsu manifold with respect the quartersymmetric non-metric connection D satisfying the condition $\bar{C} \cdot \bar{S}=0$. Then from (48), we get

$$
\begin{equation*}
\bar{S}(\bar{C}(X, Y) Z, W)+\bar{S}(Z, \bar{C}(X, Y) W)=0 \tag{50}
\end{equation*}
$$

where $X, Y, Z, W \in \chi(M)$. Now putting $X=\xi$ in (50), we get

$$
\begin{equation*}
\bar{S}(\bar{C}(\xi, X) Y, Z)+\bar{S}(Y, \bar{C}(\xi, X) Z)=0 \tag{51}
\end{equation*}
$$

Using (41) and (44) we have
$\bar{S}(\bar{C}(\xi, X) Y, Z)=\left[\frac{\bar{r}}{(n-1)(n-2)}-\frac{(n+2)}{n-2}\right][2 n \eta(Z) g(X, Y)+\eta(Y) \bar{S}(X, Z)]$

$$
\begin{equation*}
+\eta(Y) \bar{S}(\phi X, Z)+\frac{1}{n-2}\left[2 n \eta(Z) \bar{S}(X, Y)+\bar{S}^{2}(X, Z) \eta(Y)\right] \tag{52}
\end{equation*}
$$

and

$$
\begin{align*}
& \bar{S}(\bar{C}(\xi, X) Y, Z)=\left[\frac{\bar{r}}{(n-1)(n-2)}-\frac{(n+2)}{n-2}\right][2 n \eta(Y) g(X,)+\eta(Z) \bar{S}(X, Y)] \\
& +\eta(Z) \bar{S}(\phi X, Y)+\frac{1}{n-2}\left[2 n \eta(Y) \bar{S}(X, Z)+\bar{S}^{2}(X, Y) \eta(Z)\right] \tag{53}
\end{align*}
$$

Using (52) and (53) in (51) we get

$$
\begin{gather*}
2 n\left[\frac{r}{(n-1)(n-2)}-\frac{(n+2)}{n-2}\right] \\
+\left[\frac{r}{(n-1)(n-2)}+1\right]\{\eta(Z) g(X, Y)+\eta(Y) g(X, Z)\}+\eta(Z) \bar{S}(\phi X, Y) \\
+\frac{1}{n-2}\left[\eta(Z) \bar{S}^{2}(X, Y)+\bar{S}^{2}(X, Z) \eta(Y)\right] \tag{54}
\end{gather*}
$$

Replacing $Z=\xi$ in (54) and using (44) and (46) we get
$\left.\bar{S}^{2}(X, Y)=-\left\{\frac{r}{(n-1)}+n-2\right\} \bar{S}(X, Y)+2 n\left\{\frac{r}{n-1}+n+2\right\} g(X, Y)\right]$

$$
-2 n(2 n-1) \eta(X) \eta(Y)-(n-2) \bar{S}(\phi X, Y)
$$

A Kenmotsu manifold M with the quarter-symmetric non-metric connection D is said to be η-Einstein if its Ricci tensor \bar{S} is of the form

$$
\begin{equation*}
\bar{S}(X, Y)=A g(X, Y)+B \eta(X) \eta(Y) \tag{55}
\end{equation*}
$$

where A and B are smooth functions on M.
Now putting $X=Y=e_{i}, i=1,2, \ldots, 2 n+1$ in (55) and taking summation for $1 \leq i \leq n$ we get,

$$
\begin{equation*}
A(2 n+1)+B=r \tag{56}
\end{equation*}
$$

Again replacing $X=Y=\xi$ in (55) we have

$$
\begin{equation*}
A+B=-2 n \tag{57}
\end{equation*}
$$

Solving (56) and (57) we obtain $A=\frac{r}{2 n}+1$ and $B=-\left[\frac{r}{2 n}+2 n+1\right]$.

Thus the Ricci tensor of an η-Einstein manifold with the quarter-symmetric non-metric connection D is given by

$$
\begin{equation*}
\bar{S}(X, Y)=\left[\frac{r}{2 n}+1\right] g(X, Y)-\left[\frac{r}{2 n}+2 n+1\right] \eta(X) \eta(Y) \tag{58}
\end{equation*}
$$

6. $\quad \eta$-Einstein Kenmotsu manifold with respect to the quarter-symmetric non-metric connection D satisfying the condition $\bar{C} \cdot \bar{S}=0$.

Theorem 6.1: Let M be an η-Einstein Kenmotsu manifold with the restriction $U=Y=\xi$ in $\chi(M)$. Then $\bar{C} \cdot \bar{S}=0$ iff

$$
g(X, Z)=\eta(X) \eta(Z), \text { where } X, Z \in \chi(M)
$$

Proof: Let M be an η-Einstein Kenmotsu manifold with respect to the quarter-symmetric non-metric connection D satisfying $\bar{C} \cdot \bar{S}=0$. Using (48) in (58), we get

$$
\eta(\bar{C}(X, Y) Z) \eta(W)+\eta(\bar{C}(X, Y) W) \eta(Z)=0
$$

Using (38), (42), (44) and (58) in the above equation we obtain
$4 g(\phi U, X) \eta(Y) \eta(Z)=\frac{n+1}{n-2}\left\{\frac{r}{2 n(n-1)+1}\right\}[g(U, Y) \eta(X) \eta(Z)$

$$
\begin{equation*}
+g(U, Z) \eta(X) \eta(Y)-g(X, Y) \eta(U) \eta(Z)-g(X, Z) \eta(Y) \eta(U)] \tag{59}
\end{equation*}
$$

Putting $U=Y=\xi$ in (59) we get
$g(X, Z)=\eta(X) \eta(Z)$.
Conversely,

$$
\begin{aligned}
\bar{C} \cdot \bar{S} & =4 g(\phi U, X) \eta(Y) \eta(Z)-\frac{n+1}{n-2}\left\{\frac{r}{2 n(n-1)+1}\right\}[g(U, Y) \eta(X) \eta(Z) \\
& +g(U, Z) \eta(X) \eta(Y)-g(X, Y) \eta(U) \eta(Z)-g(X, Z) \eta(Y) \eta(U)] .
\end{aligned}
$$

Putting $U=Y=\xi$ in the above equation we get
$\bar{C} \cdot \bar{S}=-g(X, Z)+\eta(X) \eta(Z)$.
Thus $\bar{C} \cdot \bar{S}=0$.

7. Ricci pseudosymmetric Kenmotsu manifolds with quarter-symmetric non-metric connection D

Theorem 7.1: A Ricci pseudosymmetric Kenmotsu manifold M with quartersymmetric non-metric connection D with restriction $Y=W=\xi \in \chi(M)$ and $L_{\bar{S}}=-1$ is an η-Einstein manifold.

Proof: Kenmotsu manifold M with quarter-symmetric non-metric connection D is called a Ricci pseudosymmetric Kenmotsu manifold if

$$
\begin{equation*}
(\bar{R}(X, Y) \cdot \bar{S})(Z, W)=L_{\bar{S}}[((X \wedge Y) \cdot \bar{S})(Z, W)] \tag{60}
\end{equation*}
$$

or,
$\bar{S}(\bar{R}(X, Y) Z, W)+\bar{S}(Z, \bar{R}(X, Y) W)$

$$
\begin{equation*}
=L_{\bar{S}}[\bar{S}((X \wedge Y) Z, W)+\bar{S}(Z,(X \wedge Y) W)] \tag{61}
\end{equation*}
$$

Putting $Y=W=\xi$, in (61) and using (2), (41) and (44), we have

$$
\begin{equation*}
\left[L_{\bar{S}}+1\right][\bar{S}(Z, X)+2 n g(Z, X)]=-\bar{S}(Z, \phi X) \tag{62}
\end{equation*}
$$

Then for $L_{\bar{S}}=-1$, (62) becomes
$\bar{S}(Z, \phi X)=0$.
Then (36) implies that M is an η-Einstein manifold.
Corollary 7.1: If M is a Ricci semi-symmetric α-Sasakian manifold with quarter-symmetric non-metric connection D with restriction $Y=W=\xi$, then $\bar{S}(Z, X)+2 n g(Z, X)+\bar{S}(Z, \phi X)=0$.

Proof: Sine M is a Ricci semi-symmetric Kenmotsu manifold with quartersymmetric non-metric connection D, then $L_{\bar{C}}=0$. Putting $L_{\bar{C}}=0$ in (62) we get $\bar{S}(Z, X)+2 n g(Z, X)+\bar{S}(Z, \phi X)=0$.

8. Pseudosymmetric Kenmotsu manifold and Weyl- pseudosymmetric Kenmotsu manifold with quarter-symmetric non-metric connection

In the present section we shall give the definition of pseudosymmetric Kenmotsu manifold and Weyl-pseudosymmetric Kenmotsu manifold with quarter-symmetric non-metric connection and discuss some of there properties.

Definition 8.1: A Kenmotsu manifold M with quarter-symmetric non-metric connection D is said to be pseudosymmetric Kenmotsu manifold with quartersymmetric non-metric connection if the curvature tensor \bar{R} of M with respect to D satisfies the conditions

$$
\begin{equation*}
(\bar{R}(X, Y) \circ \bar{R})(U, V, W)=L_{\bar{R}}[((X \wedge Y) \circ \bar{R})(U, V, W)] \tag{63}
\end{equation*}
$$

where $(\bar{R}(X, Y) \circ \bar{R})(U, V, W)=\bar{R}(X, Y)(\bar{R}(U, V) W)$

$$
\begin{equation*}
-\bar{R}(\bar{R}(X, Y) U, V) W-\bar{R}(U, \bar{R}(X, Y) V) W-\bar{R}(U, V)(R(X, Y) W) \tag{64}
\end{equation*}
$$

and $\quad((X \wedge Y) \circ \bar{R})(U, V, W)=(X \wedge Y)(\bar{R}(U, V) W)$

$$
\begin{equation*}
-\bar{R}((X \wedge Y) U, V) W-\bar{R}(U,(X \wedge Y) V) W-\bar{R}(U, V)((X \wedge Y) W) \tag{65}
\end{equation*}
$$

Definition 8.2: A Kenmotsu manifold M with quarter-symmetric non-metric connection D is said to be Weyl-pseudosymmetric Kenmotsu manifold with quartersymmetric non-metric connection if the curvature tensor \bar{R} of M with respect to D satisfies the conditions

$$
\begin{equation*}
(\bar{R}(X, Y) \circ \bar{C})(U, V, W)=L_{\bar{C}}[((X \wedge Y) \circ \bar{C})(U, V, W)] \tag{66}
\end{equation*}
$$

where $(\bar{R}(X, Y) \circ \bar{C})(U, V, W)=\bar{R}(X, Y)(\bar{C}(U, V) W)$

$$
\begin{equation*}
-\bar{C}(\bar{R}(X, Y) U, V) W-\bar{C}(U, \bar{R}(X, Y) V) W-\bar{C}(U, V)(R(X, Y) W) \tag{67}
\end{equation*}
$$

and $\quad((X \wedge Y) \circ \bar{C})(U, V, W)=(X \wedge Y)(\bar{C}(U, V) W)$

$$
\begin{equation*}
-\bar{C}((X \wedge Y) U, V) W-\bar{C}(U,(X \wedge Y) V) W-\bar{C}(U, V)((X \wedge Y) W) \tag{68}
\end{equation*}
$$

Theorem 8.1: Let M be a Kenmotsu manifold. If M is Weyl-pseudosymmetric with the connection D then M is either conformally flat and η-Einstein manifold or $L_{\bar{C}}=-1$.

Proof: Let M be a Weyl-pseudosymmetric Kenmotsu manifold and $X, Y, U, V, W \in \chi(M)$. Then using (67) and (68) in (66), we have

$$
\begin{align*}
& \bar{R}(X, Y)(\bar{C}(U, V) W)-\bar{C}(\bar{R}(X, Y) U, V) W \\
& -\bar{C}(U, \bar{R}(X, Y) V) W-\bar{C}(U, V)(R(X, Y) W) \\
& =L_{\bar{C}} \bar{C}^{(}(X \wedge Y)(\bar{C}(U, V) W)-\bar{C}((X \wedge Y) U, V) W \\
& \tag{69}\\
& \quad-\bar{C}(U,(X \wedge Y) V) W-\bar{C}(U, V)((X \wedge Y) W)]
\end{align*}
$$

Replacing X with ξ in (69) we obtain

$$
\begin{align*}
& \bar{R}(\xi, Y)(\bar{C}(U, V) W)-\bar{C}(\bar{R}(\xi, Y) U, V) W \\
& -\bar{C}(U, \bar{R}(\xi, Y) V) W-\bar{C}(U, V)(R(\xi, Y) W) \\
& =L_{\bar{C}}[(\xi \wedge Y)(\bar{C}(U, V) W)-\bar{C}((\xi \wedge Y) U, V) W \\
& \quad-\bar{C}(U,(\xi \wedge Y) V) W-\bar{C}(U, V)((\xi \wedge Y) W)] \tag{70}
\end{align*}
$$

Using (2), (41) in (70) and taking the inner product of (70) with ξ, we get
$-\bar{C}(U, V, W, Y)+\eta(\bar{C}(U, V) W) \eta(Y)-g(Y, U) \eta(\bar{C}(\xi, V) W)$
$+\eta(U) \eta(\bar{C}(Y, V) W)-g(Y, V) \eta(\bar{C}(U, \xi) W)+\eta(V) \eta(\bar{C}(U, Y) W)$
$+\eta(W) \eta(\bar{C}(U, V) Y)+\eta(U) \eta(\bar{C}(\phi Y, V) W)+\eta(V) \eta(\bar{C}(U, \phi Y) W)$
$+\eta(W) \eta(\bar{C}(U, V) \phi Y)-g(Y, W) \eta(\bar{C}(U, V) \xi)$
$=\quad L_{\bar{C}}[\bar{C}(U, V, W, Y) \quad-\quad \eta(Y) \eta(\bar{C}(U, V) W) \quad+\quad g(Y, U) \eta(\bar{C}(\xi, V) W) \quad-$
$\eta(U) \eta(\bar{C}(Y, V) W+g(Y, V) \eta(\bar{C}(U, \xi) W)-\eta(V) \eta(\bar{C}(U, Y) W)-\eta(W) \eta(\bar{C}(U, V) Y)+$ $g(Y, W) \eta(\bar{C}(U, V) \xi)]$.
Then putting $Y=U=\xi$, we get

$$
\begin{equation*}
\left[L_{\bar{C}}+1\right] \eta(\bar{C}(\xi, V) W)=0 \tag{71}
\end{equation*}
$$

Now (71) gives either $\eta(\bar{C}(\xi, V) W)=0$ or $L_{\bar{C}}=-1$.

Now $L_{\bar{C}} \neq-1$, then $\eta(\bar{C}(\xi, V) W)=0$, and we have that M is conformally flat which gives
$\bar{S}(V, W)=A g(V, W)+B \eta(V) \eta(W)$,
where $A=n+2+\frac{\bar{r}}{n-1}$
and $B=-\left[3 n+2+\frac{\bar{r}}{n-1}\right]$.
This shows that M is an η-Einstein manifold.
If $\eta(\bar{C}(\xi, V) W) \neq 0$, then we have $L_{\bar{C}}=-1$.
Theorem 8.2: Let M be a Kenmotsu manifold. If M is pseudosymmetric then either M is a spece of constant curvature and $g(X, Y)=\eta(X) \eta(Y)$ or
$L_{\bar{R}}=-1$, for $X, Y \in \chi(M)$.
Proof: Let M be a pseudosymmetric Kenmotsu manifold and $X, Y, U, V, W \in$ $\chi(M)$. Then using (64) and (65) in (63), we have

$$
\begin{align*}
& \bar{R}(X, Y)(\bar{R}(U, V) W)-\bar{R}(\bar{R}(X, Y) U, V) W \\
& -\bar{R}(U, \bar{R}(X, Y) V) W-\bar{R}(U, V)(R(X, Y) W) \\
& =L_{\bar{R}}[(X \wedge Y)(\bar{R}(U, V) W)-\bar{R}((X \wedge Y) U, V) W \\
& \quad-\bar{R}(U,(X \wedge Y) V) W-\bar{R}(U, V)((X \wedge Y) W)] . \tag{72}
\end{align*}
$$

Replacing X with ξ in (72) we obtain

$$
\begin{align*}
& \bar{R}(\xi, Y)(\bar{R}(U, V) W)-\bar{R}(\bar{R}(\xi, Y) U, V) W \\
& -\bar{R}(U, \bar{R}(\xi, Y) V) W-\bar{R}(U, V)(R(\xi, Y) W) \\
& =L_{\bar{R}}[(\xi \wedge Y)(\bar{R}(U, V) W)-\bar{R}((\xi \wedge Y) U, V) W \\
& \quad-\bar{R}(U,(\xi \wedge Y) V) W-\bar{R}(U, V)((\xi \wedge Y) W)] . \tag{73}
\end{align*}
$$

Using (2), (41) in (70) and taking the inner product of (73) with ξ, we get
$-\bar{R}(U, V, W, Y)+\eta(\bar{R}(U, V) W) \eta(Y)-g(Y, U) \eta(\bar{R}(\xi, V) W)$
$+\eta(U) \eta(\bar{R}(Y, V) W)-g(Y, V) \eta(\bar{R}(U, \xi) W)+\eta(V) \eta(\bar{R}(U, Y) W)$
$+\eta(W) \eta(\bar{R}(U, V) Y)+\eta(U) \eta(\bar{R}(\phi Y, V) W)+\eta(V) \eta(\bar{R}(U, \phi Y) W)$
$+\eta(W) \eta(\bar{R}(U, V) \phi Y)-g(Y, W) \eta(\bar{R}(U, V) \xi)$
$=L_{\bar{R}}[\bar{R}(U, V, W, Y)-\eta(Y) \eta(\bar{R}(U, V) W)+g(Y, U) \eta(\bar{R}(\xi, V) W)$
$-\eta(U) \eta(\bar{R}(Y, V) W+g(Y, V) \eta(\bar{R}(U, \xi) W)-\eta(V) \eta(\bar{R}(U, Y) W)$
$-\eta(W) \eta(\bar{R}(U, V) Y)+g(Y, W) \eta(\bar{R}(U, V) \xi)]$.
Then putting $Y=U=\xi$, we get

$$
\begin{equation*}
\left[L_{\bar{C}}+1\right] \eta(\bar{R}(\xi, V) W)=0 . \tag{74}
\end{equation*}
$$

Now (71) gives either $\eta(\bar{R}(\xi, V) W)=0$ or $L_{\bar{R}}=-1$.
Now $L_{\bar{R}} \neq-1$, then $\eta(\bar{R}(\xi, V) W)=0$, and we have that M is a space of constant curvature and $\eta(\bar{R}(\xi, V) W)=0$ gives
$g(V, W)=\eta(V) \eta(W)$.
If $\eta(\bar{R}(\xi, V) W) \neq 0$, then we have $L_{\bar{R}}=-1$.
9. Example of pseudosymmetric Kenmotsu manifold with quarter-symmetric non-metric connection D

Let us consider the three dimensional manifold $M=\left\{\left(x_{1}, x_{2}, x_{3}\right)\right.$ $\left.\in R^{3}: x_{1}, x_{2}, x_{3} \in R\right\}$, where $\left(x_{1}, x_{2}, x_{3}\right)$ are the standard coordinates of R^{3}. We consider the vector fields

$$
e_{1}=x_{1} \frac{\partial}{\partial x_{3}}, e_{2}=x_{1} \frac{\partial}{\partial x_{2}} \text { and } e_{3}=-x_{1} \frac{\partial}{\partial x_{1}} .
$$

Clearly, $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a set of linearly independent vectors for each point of M and hence a basis of M. The non-metric g is defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{3}\right)=0 \\
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
\end{aligned}
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$, for any $Z \in \chi(M)$ and the $(1,1)-$ tensor field ϕ is defined by

$$
\phi e_{1}=e_{2}, \phi e_{2}=-e_{1}, \phi e_{3}=0
$$

From the linearity of ϕ and g, we have

$$
\begin{aligned}
& \eta\left(e_{3}\right)=1 \\
& \phi^{2}(X)=-X+\eta(X) e_{3} \text { and } \\
& \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \text { for any } X \in \chi(M)
\end{aligned}
$$

Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\left[e_{1}, e_{2}\right]=0,\left[e_{1}, e_{3}\right]=e_{1},\left[e_{2}, e_{3}\right]=e_{2}
$$

Koszul's formula is defined by

$$
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)
$$

$$
-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
$$

Then from the above formula we can calculate the following,

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=e_{3}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{3}=e_{1} \\
\nabla_{e_{2}} e_{1}=0, & \nabla_{e_{2}} e_{2}=-e_{3}, & \nabla_{e_{2}} e_{3}=e_{2} \\
\nabla_{e_{3}} e_{1}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{3}=0
\end{array}
$$

Hence the structure (ϕ, ξ, η, g) is a Kenmotsu manifold. [8]
Using (22), we find D, the quarter-symmetric non-metric connection on M
$D_{e_{1}} e_{1}=-e_{3}$,
$D_{e_{1}} e_{2}=0$,
$D_{e_{1}} e_{3}=e_{1}+e_{2}$,
$D_{e_{2}} e_{1}=0, \quad D_{e_{2}} e_{2}=-e_{3}$,
$D_{e_{2}} e_{3}=e_{2}-e_{1}$,
$D_{e_{3}} e_{1}=0$,
$D_{e_{3}} e_{2}=0$,
$D_{e_{3}} e_{3}=0$.

Using (23), the torson tensor \bar{T}, with respect to quarter-symmetric non-metric connection D as follows:
$\bar{T}\left(e_{i}, e_{i}\right)=0, \forall i=1,2,3$
$\bar{T}\left(e_{1}, e_{2}\right)=0, \bar{T}\left(e_{1}, e_{3}\right)=e_{2}, \bar{T}\left(e_{2}, e_{3}\right)=-e_{1}$.
Also $\left(D_{e_{1}} g\right)\left(e_{2}, e_{3}\right)=-1,\left(D_{e_{2}} g\right)\left(e_{3}, e_{1}\right)=1$
and $\left(D_{e_{3}} g\right)\left(e_{1}, e_{2}\right)=0$.
Thus M is a 3 -dimensional Kenmotsu manifold with quarter-symmetric non-metric connection D.

Now we calculate curvature tensor \bar{R} and Ricci tensors \bar{S} as follows:
$\begin{array}{ll}\bar{R}\left(e_{1}, e_{2}\right) e_{3}=0, & \bar{R}\left(e_{1}, e_{3}\right) e_{3}=-\left(e_{1}+e_{2}\right), \\ \bar{R}\left(e_{3}, e_{2}\right) e_{2}=-e_{3}, & \bar{R}\left(e_{3}, e_{1}\right) e_{1}=-e_{3}, \\ \bar{R}\left(e_{2}, e_{1}\right) e_{1}=e_{1}-e_{2}, & \bar{R}\left(e_{2}, e_{3}\right) e_{3}=e_{1}-e_{2}, \\ \bar{R}\left(e_{1}, e_{2}\right) e_{2}=-\left(e_{1}+e_{2}\right) . & \end{array}$
From the definition of $\bar{S}, \bar{S}(X, Y)=\Sigma_{i} g\left(\bar{R}\left(e_{i}, X\right) Y, e_{i}\right), i=1,2,3$, we get $\bar{S}\left(e_{1}, e_{1}\right)=\bar{S}\left(e_{2}, e_{2}\right)=\bar{S}\left(e_{3}, e_{3}\right)=-2, \bar{S}\left(e_{1}, e_{2}\right)=1$,
$\bar{S}\left(e_{1}, e_{3}\right)=\bar{S}\left(e_{2}, e_{3}\right)=0$.
Again using (2) we get
$\left(e_{1}, e_{2}\right) e_{3}=0, \quad\left(e_{i} \wedge e_{i}\right) e_{j}=0, \forall i, j=1,2,3$,
$\left(e_{1} \wedge e_{2}\right) e_{2}=\left(e_{1} \wedge e_{3}\right) e_{3}=e_{1}, \quad\left(e_{2} \wedge e_{1}\right) e_{1}=\left(e_{2} \wedge e_{3}\right) e_{3}=e_{2}$,
$\left(e_{3} \wedge e_{2}\right) e_{2}=\left(e_{3} \wedge e_{1}\right) e_{1}=e_{3}$.
Now $\bar{R}\left(e_{1}, e_{2}\right)\left(\bar{R}\left(e_{3}, e_{1}\right) e_{2}\right)=0, \quad \bar{R}\left(\bar{R}\left(e_{1}, e_{2}\right) e_{3}, e_{1}\right) e_{2}=0$,
$\bar{R}\left(e_{3}, \bar{R}\left(e_{1}, e_{2}\right) e_{1}\right) e_{2}=-e_{3}$,
$\left(\bar{R}\left(e_{3}, e_{1}\right)\left(\bar{R}\left(e_{1}, e_{2}\right) e_{2}\right)=e_{3}\right.$.
Then $\left(\bar{R}\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)=0$.
Again $\left(e_{1} \wedge e_{2}\right)\left(\bar{R}\left(e_{3}, e_{1}\right) e_{2}\right)=0, \quad \bar{R}\left(\left(e_{1} \wedge e_{2}\right) e_{3}, e_{1}\right) e_{2}=0$,
$\bar{R}\left(e_{3},\left(e_{1} \wedge e_{2}\right) e_{1}\right) e_{2}=e_{3}$,
$\bar{R}\left(e_{3}, e_{1}\right)\left(\left(e_{1} \wedge e_{2}\right) e_{2}\right)=-e_{3}$.
Then $\left(\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)=0$.
Thus

$$
\left(\bar{R}\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)=L_{\bar{R}}\left[\left(\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)\right],
$$

for any function $L_{\bar{R}} \in C^{\infty}(M)$.
Similarly, we can show any combination of e_{1}, e_{2} and $e_{3}(60)$.
Hence M is a pseudosymmetric Kenmotsu manifold with quarter-symmetric nonmetric connection.

References

[1] Samir Abou Akl, On partially pseudosymmetric contact metric three-manifold, Damascus University Journal for BASIC SCIENCE, 24, 2 (2008), 17-28
[2] F. Defever, R. Deszcz \& L. Verstraelen, On pseudosymmetric Para-Kahler manifolds, Colloquium Mathematicum, 74, 2(1997), 153-160
[3] J.T. Cho \& J.I. Inoguchi, Pseudosymmetric contact 3-manifolds, J. Korean Math., 42, 5 (2005), 913-932
[4] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg., Ser. A 44 (1992), 1-34
[5] M. Belkhelfa, R. Deszcz \& L. Verstraelen, Symmetric properties of Sasakian space forms, Soochow Journal of Mathematics, 31 (Oct, 2005), 611-616
[6] R. Deszcz, F. Defever, L. Verstraelen \& L. Vraneken, On pseudosymmetric spacetimes, J. Math. Phys., 35 (1994), 5908-5921
[7] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math., 22 (1989), 1053-1065
[8] S.S. Shukla \& M.K. Shukla, On ϕ-Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math., 39, 2 (2009), 89-95
[9] C.S. Bagewadi and Venkatesha, Some curvature tensor on a Kenmotsu manfold, Tensor, 68 (2007), 140-147
[10] D.G. Prakash, C.S. Bagewadi \& N.S. Basavarajappa, On pseudosymmetric Lorentzian $\alpha-$ Sasakian manifolds, IJPAM, 48, 1 (2008), 57-65
[11] M.C. Chaki \& B. Chaki, On pseudo symmetric manifolds admitting a type of semisymmetric connection, Soochow Journal of Mathematics, 13, 1 (June, 1987), 1-7

[^0]: ${ }^{a}$ Corresponding author. Email: patrachinmoy@yahoo.co.in

