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I. Vekua constructed hierarchical models for elastic prismatic shells, in particular, plates of
variable thickness, when on the face surfaces either stresses or displacements are known. In
the present paper other hierarchical models for cusped, in general, elastic prismatic shells are
constructed and analyzed, namely, when on the face surfaces (i) a normal to the projection of
the prismatic shell component of a stress vector and parallel to the projection of the prismatic
shell components of a displacement vector, (ii) a normal to the projection of the prismatic
shell component of the displacement vector and parallel to the projection of the prismatic
shell components of the stress vector are prescribed. Besides we construct hierarchical models,
when on the one face surface conditions (i) and on the other one conditions (ii) are known
and also models, when on the upper face surface stress vector and on the lower face surface
displacements and vice versa are known. In the zero approximations of the models under
consideration peculiarities (depending on sharpening geometry of the cusped edge) of correct
setting boundary conditions at edges are investigated. In concrete cases some boundary value
problems are solved in an explicit form.
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1. Introduction

Let Ox1x2x3 be an anticlockwise-oriented rectangular Cartesian frame of origin O.
We conditionally assume the x3-axis vertical. The elastic body is called a prismatic
shell [1]-[3] if it is bounded above and below by, respectively, the surfaces (so called
face surfaces)

x3 =
(+)

h (x1, x2) and x3 =
(−)
h (x1, x2), (x1, x2) ∈ ω,

laterally by a cylindrical surface Γ of generatrix parallel to the x3-axis and its
vertical dimension is sufficiently small compared with other dimensions of the body.
ω := ω ∪ ∂ω is the so-called projection of the prismatic shell on x3 = 0.

Let the thickness of the prismatic shell be

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)
h (x1, x2)

{
> 0 for (x1, x2) ∈ ω,
≥ 0 for (x1, x2) ∈ ∂ω
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1 2

(+)

h 1 2

(−)
h 1 2

If the thickness of the prismatic shell vanishes on some subset of ∂ω, it is called a
cusped one.

Let us note that the lateral boundary of the standard shell is orthogonal to the
”middle surface” of the shell, while the lateral boundary of the prismatic shell is
orthogonal to the prismatic shell’s projection on x3 = 0.

I. Vekua [1], [2] constructed hierarchical models for elastic prismatic shells, in
particular, plates of variable thickness, when on the face surfaces either stresses
(Model I) or displacements (Model II) are known. He and his followers have in-
vestigated various aspects of the first model (for a survey see the introduction in
[4]). The up-dated survey of results concerning cusped elastic prismatic shells in
the cases of the first and second models is given in [3]. In the present paper six
hierarchical models for cusped, in general, elastic prismatic shells are constructed
and analyzed, when on the face surfaces (i) a normal to the projection of the pris-
matic shell component Q(±)

ν 3
of a stress vector and parallel to the projection of

the prismatic shell components uα(x1, x2,
(±)
h , t), α = 1, 2, of a displacement vec-

tor (Model III), (ii) a normal to the projection of the prismatic shell component

u3(x1, x2,
(±)
h , t) of the displacement vector and parallel to the projection of the

prismatic shell components Q(±)
ν α

, α = 1, 2, of the stress vector (Model IV) are

known.
(+)
ν and

(−)
ν denote outward normals to the face surfaces

(+)

h and
(−)
h , re-

spectively. Hierarchical Models will be called Model V and Model VI, when on
the one face surface conditions (i) and on the other one conditions (ii) are pre-
scribed. Besides we construct hierarchical models when on the upper face surface
stress vector and on the lower face surface displacements (Model VII) and vice
versa (Model VIII) are prescribed. In the zero approximations of the models under
consideration peculiarities (depending on sharpening geometry of the cusped edge)
of correct setting boundary conditions at edges are investigated. In concrete cases
some boundary value problems are solved in an explicit form. In what followsXij

and eij are the stress and strain tensors, respectively, ui are the displacements, Φi
are the volume force components, ρ is the density, λ and µ are the Lamé constants,
δij is the Kronecker delta, subscripts preceded by a comma mean partial deriva-
tives with respect to the corresponding variables. Moreover, repeated indices imply
summation (Greek letters run from 1 to 2 and Latin letters run from 1 to 3).

According to I.Vekua’s [1, 2] dimension reduction method, in order to construct
hierarchical models for elastic prismatic shells we multiply the basic equations of
linear three-dimensional elasticity,
Motion Equations

Xij,i + Φj = ρ
∂2uj
∂t2

(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R
3, t > t0, j = 1, 2, 3; (1)

Generalized Hooke’s law (isotropic case)

Xij = λθδij + 2µeij , i, j = 1, 2, 3, θ := eii; (2)

˜      2h(x , x ) := (x , x ) + (x , x ).

and
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Kinematic Relations

eij =
1

2
(ui,j + uj,i), i, j = 1, 2, 3, (3)

by Legendre polynomials Pr(ax3 − b), where

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)

h(x1, x2)
,

and then we integrate with respect to the thickness variable x3 within the limits
(−)
h (x1, x2) and

(−)
h (x1, x2). By these calculations prescribed on upper and lower face

surfaces components are assumed as known, while the values of other components
on the face surfaces are calculated from their Fourier-Legendre series expansions

on the segment x3 ∈
[(−)
h (x1, x2),

(+)

h (x1, x2)
]
. So, we get the equivalent infinite

system of relations with respect to the so called l-th order moments

(
Xijl, eijl, uil

)
(x1, x2, t) :=

∫ (+)

h

(−)

h

(
Xij , eij , ui

)
(x1, x2, x3, t)Pl(ax3 − b) dx3,

i, j = 1, 2, 3, l = 0, 1, · · · .

Then, having followed the usual procedure used in the theory of elasticity, we
get an equivalent infinite system, consisting of three groups corresponding to each
j = 1, 2, 3 (to this end, see (1)), with respect to the l-th order moments uil. After
this if we assume that the moments whose subscripts, indicating moments’ order,
are greater than N equal zero and consider for each j = 1, 2, 3 only the first N + 1
equations in the obtained infinite system of equations with respect to the l-th
order moments uil we obtain the Nth order approximation (hierarchical model)

governing system with respect to
N
uil or

N
v il :=

N
uil
hl+1

, i = 1, 2, 3, l = 0, N

(roughly speaking
N
uil is an “approximate value” of uil).

2. Construction of Models

For the sake of transparency we confine ourselves to immediate deriving the N = 0
approximation. To this end, we will need only integration of the basic 3D relations
of the theory of elasticity keeping in mind quantities prescribed on the face surfaces.

Integrating basic equations (1)-(3) with respect to x3 from
(−)
h (x1, x2) to
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(+)

h (x1, x2), we get

Xjβ0,β(x1, x2, t)−Xjβ(x1, x2,
(+)

h (x1, x2), t)
(+)

h ,β

+Xj3(x1, x2,
(+)

h (x1, x2), t) +Xjβ(x1, x2,
(−)
h (x1, x2), t)

(−)
h ,β

−Xj3(x1, x2,
(−)
h (x1, x2), t) + Φj0(x1, x2, t) = ρ

∂2uj0(x1, x2, t)

∂t2
, j = 1, 2, 3; (4)

Xij0(x1, x2, t) = λekk0(x1, x2, t)δij + 2µeij0(x1, x2, t), i, j = 1, 2, 3; (5)

eiβ0(x1, x2, t) =
1

2

[
ui0,β(x1, x2, t) + ui(x1, x2,

(−)
h , t)

(−)
h ,β −ui(x1, x2,

(+)

h , t)
(+)

h ,β

+

uβ0,α(x1, x2, t)− uβ(x1, x2,
(+)

h , t)
(+)

h ,α +uβ(x1, x2,
(−)
h , t)

(−)
h ,α , i = α,

uβ(x1, x2,
(+)

h , t)− uβ(x1, x2,
(−)
h , t), i = 3

 , (6)

i = 1, 2, 3, β = 1, 2,

e330(x1, x2, t) = u3(x1, x2,
(+)

h , t)− u3(x1, x2,
(−)
h , t). (7)

Model III. On the face surfaces

Q(±)
ν 3

(x1, x2,
(±)
h (x1, x2), t)

= X3β(x1, x2,
(±)
h (x1, x2), t)

(±)
ν β +X33(x1, x2,

(±)
h (x1, x2), t)

(±)
ν 3,

uα(x1, x2,
(±)
h (x1, x2), t), α = 1, 2,

(8)

are known.
Model IV.On the face surfaces

Q(±)
ν α

(x1, x2,
(±)
h (x1, x2), t)

= Xαβ(x1, x2,
(±)
h (x1, x2), t)

(±)
ν β +Xα3(x1, x2,

(±)
h (x1, x2), t)

(±)
ν 3,

u3(x1, x2,
(±)
h (x1, x2), t), α = 1, 2,

(9)

are known.
Model V.

On the upper surface
(+)

h the quantities (8) are known, (10)



28 Bulletin of TICMI

on the lower surface
(−)
h the quantities (9) are known. (11)

Model VI. On
(+)

h the quantities (9) and on
(−)
h the quantities (8) are known.

Model VII. On the upper face surface stress vector components Q(+)
ν i
, i = 1, 2, 3,

and on the lower face surface displacements are known.
Model VIII.On the upper face surface displacements and on the lower face sur-

face stress vector components Q(−)
ν i

, i = 1, 2, 3, are known.

In the N = 0 approximation it is assumed that

ui(x1, x2, x3, t) ∼=
ui0(x1, x2, t)

2h
=:

1

2
vi0(x1, x2, t), i = 1, 2, 3, (12)

Xij(x1, x2, x3, t) ∼=
Xij0(x1, x2, t)

2h
, i = 1, 2, 3, (13)

In the case of Model III, taking into account (12), (13), from (4), (7), (6) we obtain
correspondingly

X3β0,β + Q(+)
ν 3

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1

+ Q(−)
ν 3

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1 + Φ30 = ρ

∂2u30
∂t2

, (14)

Xαβ0,β −
1

2h

[
Xαβ0

((+)

h ,β −
(−)
h ,β

)
−Xα30 +Xα30

]
+ Φα0 = ρ

∂2uα0
∂t2

, α = 1, 2,

i.e.,

Xαβ0,β − (lnh),β Xαβ0 + Φα0 = ρ
∂2uα0
∂t2

, α = 1, 2; (15)

e330 = u3(x1, x2,
(+)

h , t)− u3(x1, x2,
(−)
h , t)

=: Ψ33 =
1

2
v30(x1, x2, t)−

1

2
v30(x1, x2, t) = 0, (16)

e3β0 =
1

2

{
u30,β+

[
uβ(x1, x2,

(+)

h , t)−uβ(x1, x2,
(−)
h , t)

]
+

1

2
v30

((−)
h ,β −

(+)

h ,β

)}
(17)

=
1

2

[(
hv30

)
,β −h,β v30

]
+

1

2

[
uβ(x1, x2,

(+)

h , t)− uβ(x1, x2,
(−)
h , t)

]
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=
1

2
hv30,β +

1

2

[
uβ(x1, x2,

(+)

h , t)− uβ(x1, x2,
(−)
h , t)

]
, β = 1, 2;

eαβ0 =
1

2

[
uα0,β + uβ0,α − uβ(x1, x2,

(+)

h , t)
(+)

h ,α +uβ(x1, x2,
(−)
h , t)

(−)
h ,α (18)

+uα(x1, x2,
(−)
h , t)

(−)
h ,β −uα(x1, x2,

(+)

h , t)
(+)

h ,β

]
=

1

2

(
uα0,β + uβ0,α

)
+ Ψαβ

=
1

2

[
(hvα0),β +(hvβ0),α

]
+ Ψαβ, α, β = 1, 2,

where

Ψαβ :=
1

2

[
uβ(x1, x2,

(−)
h , t)

(−)
h ,α−uβ(x1, x2,

(+)

h , t)
(+)

h ,α

+uα(x1, x2,
(−)
h , t)

(−)
h ,β −uα(x1, x2,

(+)

h , t)
(+)

h ,β

]
.

Substituting (16)-(18) into (5), we get

X330(x1, x2, t) = λ
(
uγ0,γ + Ψγγ

)
= λ(hvγ0),γ +λΨγγ , (19)

X3β0(x1, x2, t) = µhv30,β + µ
[
uβ(x1, x2,

(+)

h , t)− uβ(x1, x2,
(−)
h , t)

]
, β = 1, 2, (20)

Xαβ0(x1, x2, t) = λ(hvγ0),γ δαβ + λΨγγδαβ + µ
[
(hvα0),β +(hvβ0),α

]
+2µΨαβ, α, β = 1, 2. (21)

So, when normal to the projection of the prismatic shell components Q(+)
ν 3

and

Q(−)
ν 3

of a stress vector and parallel to the projection of the prismatic shell compo-

nents uα(x1, x2,
(+)

h , t) and uα(x1, x2,
(−)
h , t), α = 1, 2, of a displacement vector are

known on
(+)

h and
(−)
h , respectively, substituting (19)-(21) into (15), (14) the gov-

erning system for the weighted zero moments vj0, j = 1, 2, 3, (superscript N = 0
is omitted below) has the following form

µ(hvα0),ββ +(λ+ µ)(hvγ0),γα−(lnh),β {λδαβ(hvγ0),γ + µ [(hvα0),β +(hvβ0),α ]}

+2µ Ψαβ,β + λΨγγ,α − (lnh),β [λδαβΨγγ + 2µ Ψαβ] +Φα0 = ρh
∂2vα0
∂t2

, (22)

α = 1, 2,
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µ(hv30,β),β +µ
[
uβ(x1, x2,

(+)

h , t)− uβ(x1, x2,
(−)
h , t)

]
,β

+Q(+)
ν 3

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1 +Q(−)
ν 3

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1

+Φ30 = ρh
∂2v30
∂t2

. (23)

In this model Ψ33 ≡ 0 in contrast to the model, when on the face surfaces only
displacements are prescribed (Model II).

In Model II Ψ33 6≡ 0, in general (see system (55) below).
Now, we consider Model IV. In the case of Model IV taking into account (12),

(13) from (4), (7), (6) we have correspondingly

Xαβ0,β +Q(+)
ν α

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1 + Q(−)
ν α

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1 + Φα0

= ρh
∂2vα0
∂t2

, α = 1, 2, (24)

X3β0,β −
1

2h

[
X3β0

((+)

h ,β −
(−)
h ,β

)
−X330 +X330

]
+ Φ30 = ρh

∂2v30
∂t2

,

i.e.,

X3β0,β − (lnh),β X3β0 + Φ30 = ρh
∂2v30
∂t2

; (25)

e330 = u3(x1, x2,
(+)

h , t)− u3(x1, x2,
(−)
h , t) =: Ψ33, (26)

e3β0 =
1

2

[
u30,β + uβ(x1, x2,

(+)

h , t)− uβ(x1, x2,
(−)
h , t)

+u3(x1, x2,
(−)
h , t)

(−)
h ,β −u3(x1, x2,

(+)

h , t)
(+)

h ,β

]
=

1

2

[
(hv30),β +

uβ0(x1, x2, t)

2h
−
uβ0(x1, x2, t)

2h

+u3(x1, x2,
(−)
h , t)

(−)
h ,β −u3(x1, x2,

(+)

h , t)
(+)

h ,β

]

=
1

2

[
(hv30),β +u3(x1, x2,

(−)
h , t)

(−)
h ,β −u3(x1, x2,

(+)

h , t)
(+)

h ,β

]
, β = 1, 2, (27)
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eαβ0 =
1

2

[
uα0,β + uβ0,α − uβ(x1, x2,

(+)

h , t)
(+)

h ,α +uβ(x1, x2,
(−)
h , t)

(−)
h ,α

+uα(x1, x2,
(−)
h , t)

(−)
h ,β −uα(x1, x2,

(+)

h , t)
(+)

h ,β

]

=
1

2

[
(hvα0),β +(hvβ0),α−vβ0h,α−vα0h,β

]
=

1

2
h
(
vα0,β +vβ0),α

)
, α = 1, 2. (28)

Substituting (26)-(28) into (5), we get

X330 = λ
[
hvγ0,γ +Ψ33

]
+ 2µΨ33, (29)

X3β0 = µ
[
(hv30),β +u3(x1, x2,

(−)
h , t)

(−)
h ,β −u3(x1, x2,

(+)

h , t)
(+)

h ,β

]
, β = 1, 2, (30)

Xαβ0 = λ
[
hvγ0,γ +Ψ33

]
δαβ + µh(vβ0,α + vα0,β), α, β = 1, 2. (31)

So, when normal to the projection of the prismatic shell components

u3(x1, x2,
(+)

h , t) and u3(x1, x2,
(−)
h , t) of the displacement vector and parallel to the

projection of the prismatic shell components Q(+)
ν α

and Q(−)
ν α

, α = 1, 2, of the stress

vector are prescribed on
(+)

h and
(−)
h , respectively, substituting (29)-(31) into (24),

(25) the governing system for the weighted zero moments vj0, j = 1, 2, 3, has the
following form

µ(hvα0,β),β + µ(hvβ0,α),β +λ(hvγ0,γ),α + λΨ33,α +Q(+)
ν α

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1

+Q(−)
ν α

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1 + Φα0 = ρh

∂2v30
∂t2

, α = 1, 2, (32)

µ(hv30),ββ −µ(lnh),β (hv30),β +µ
[
u3(x1, x2,

(−)
h , t)

(−)
h ,β − u3(x1, x2,

(+)

h , t)
(+)

h ,β

]
,β

−µ(lnh),β

[
u3(x1, x2,

(−)
h , t)

(−)
h ,β − u3(x1, x2,

(+)

h , t)
(+)

h ,β

]
+ Φ30 = ρh

∂2v30
∂t2

. (33)

In this model Ψ33 6≡ 0, in general (it is identically zero if u3(x1, x2,
(+)

h , t) =

u3(x1, x2,
(−)
h , t)), in contrast to the Model I (see system (53) below), when on the

face surfaces only stress vectors are known (in the last case Ψ33 ≡ 0).
In a similar way the governing system for Model V can be constructed .
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Indeed, for the Model V, taking into account (12), (13), from (4), (7), (6) we
obtain correspondingly

X3β0,β +
1

2h

(
X3β0

(−)
h ,β −X330

)
+Q(+)

ν 3

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1 + Φ30 = ρ
∂2u30
∂t2

, (34)

Xαβ0,β −
1

2h

(
Xαβ0

(+)

h ,β −Xα30

)
+Q(−)

ν α

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1 + Φα0 = ρ

∂2uα0
∂t2

, α = 1, 2; (35)

e330 = u3(x1, x2,
(+)

h , t)− u3(x1, x2,
(−)
h , t)

=
u30
2h
− u3(x1, x2,

(−)
h , t) =

v30
2
− u3(x1, x2,

(−)
h , t) (36)

e3β0 =
1

2

[
u30,β + uβ(x1, x2,

(+)

h , t)− uβ(x1, x2,
(−)
h , t)

+u3(x1, x2,
(−)
h , t)

(−)
h ,β − u3(x1, x2,

(+)

h , t)
(+)

h ,β

]
=

1

2

[
u30,β + uβ(x1, x2,

(+)

h , t)−
1

2h
uβ0 + u3(x1, x2,

(−)
h , t)

(−)
h ,β −

(+)

h ,β
2h

u30

]
=

1

2

[(
hv30

)
,β −

1

2

(
vβ0 +

(+)

h ,βv30
)]

+ χ
3β
, β = 1, 2. (37)

χ
3β

:=
1

2

[
uβ(x1, x2,

(+)

h , t) + u3(x1, x2,
(−)
h , t)

(−)
h ,β

]
,

eαβ0 =
1

2

[
uα0,β + uβ0,α − uβ(x1, x2,

(+)

h , t)
(+)

h ,α

+uβ(x1, x2,
(−)
h , t)

(−)
h ,α + uα(x1, x2,

(−)
h , t)

(−)
h ,β − uα(x1, x2,

(+)

h , t)
(+)

h ,β

]
=

1

2

[
uα0,β + uβ0,α − uβ(x1, x2,

(+)

h , t)
(+)

h ,α +

(−)
h ,α
2h

uβ0(x1, x2, t)

+

(−)
h ,β
2h

uα0(x1, x2, t)− uα(x1, x2,
(+)

h , t)
(+)

h ,β

]
=

1

2

[
(hvα0),β +(hvβ0),α +

(−)
h ,α
2

vβ0 +

(−)
h ,β
2

vα0

]
− χ

αβ
, (38)
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χ
αβ

:=
1

2

[
uβ(x1, x2,

(+)

h , t)
(+)

h ,α + uα(x1, x2,
(+)

h , t)
(+)

h ,β
]
, α, β = 1, 2;

Substituting (36)-(38) into (5), we get

X330 = λ
[
(hvγ0),γ +

1

2

(−)
h ,γvγ0 − χγγ

]
+ (λ+ 2µ)

[1

2
v30 − u3(x1, x2,

(−)
h , t)

]
= λ

[
(hvγ0),γ +

1

2

(−)
h ,γvγ0

]
+
λ+ 2µ

2
v30

−λχ
γγ
− (λ+ 2µ)u3(x1, x2,

(−)
h , t), (39)

X3β0 = µ
[
(hv30),β −

1

2
(vβ0 +

(+)

h ,βv30)
]

+ 2µχ
3β
, β = 1, 2; (40)

Xαβ0 = λ
[
(hvγ0),γ +

1

2

(−)
h ,γvγ0 − χγγ +

λ

2
v30 − λu3(x1, x2,

(−)
h , t)

]
δαβ

+µ
[
(hvα0),β +(hvβ0),α +

(−)
h ,α
2

vβ0 +

(−)
h ,β
2

vα0

]
− 2µχ

αβ

= λ
[
(hvγ0),γ +

(−)
h ,γ
2

vγ0 +
v30
2

]
δαβ + µ

[
(hvα0),β +(hvβ0),α +

(−)
h ,α
2

vβ0

+

(−)
h ,β
2

vα0

]
− λ
[
χ
γγ

+ u3(x1, x2,
(−)
h , t)

]
δαβ − 2µχ

αβ
, α, β = 1, 2. (41)

Substituting (39)-(41) into (35), (34) we have the following governing system for
Model V

µ(hvα0),ββ +µ(hvβ0),αβ +λ(hvγ0),γα +
λ

2

((−)
h ,γvγ0

)
,α +

µ

2

((−)
h ,αvβ0

)
,β

+
µ

2

((−)
h ,βvα0

)
,β +

λ

2
v30,α −

1

2h

{[
λ
(

(hvγ0),γ +

(−)
h ,γ
2

vγ0 +
v30
2

)
δαβ

+µ
(

(hvα0),β +(hvβ0),α +

(−)
h ,α
2

vβ0 +

(−)
h ,β
2

vα0

)](+)

h ,β

−µ
[
(hv30),α−

1

2
(vα0 +

(+)

h ,αv30)
]}

+Q(−)
ν α

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1

−λ
[
χ
γγ

+ u3(x1, x2,
(−)
h , t)

]
,α−2µχ

αβ,β
+

λ

2h

[(
χ
γγ

+ u3(x1, x2,
(−)
h , t)

)
δαβ

−2µχ
αβ

](+)

h ,β +
µ

h
χ

3α
+ Φα0 = ρh

∂2vα0
∂t2

, α = 1, 2, (42)
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µ(hv30),ββ −
µ

2
vβ0,β −

µ

2

((+)

h ,βv30

)
,β +

1

2h

{
µ
[
(hv30),β −

1

2
(vβ0 +

(+)

h ,βv30)
](−)
h ,β

−λ
[
(hvγ0),γ +

1

2

(−)
h ,γvγ0

]
− λ+ 2µ

2
v30

}
+Q(+)

ν 3

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1 (43)

+2µχ
3β,β

+
µ

h
χ

3β

(−)
h ,β +

1

2h

[
λχ

γγ
+ (λ+ 2µ)u3(x1, x2,

(−)
h , t)

]
+ Φ30 = ρh

∂2v30
∂t2

.

Taking into account conditions of Model VII and (12), (13), from (4), (7), (6) we
obtain correspondingly

Xiβ0,β +Q(+)
ν i

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1

+
1

2h

(
Xiβ0

(−)
h ,β −Xi30

)
+ Φi0 = ρ

∂2ui0
∂t2

, i = 1, 2, 3; (44)

e330 =
u30
2h
− u3(x1, x2,

(−)
h , t) =

v30
2
− u3(x1, x2,

(−)
h , t), (45)

e3β0 =
1

2

[
u30,β +

uβ0
2h
− uβ(x1, x2,

(−)
h , t) + u3(x1, x2,

(−)
h , t)

(−)
h ,β

−u30
2h

(+)

h ,β

]
=

1

2

[
(hv30),β +

vβ0
2
− v30

2

(+)

h ,β

]
− 1

2

[
uβ(x1, x2,

(−)
h , t)

−u3(x1, x2,
(−)
h , t)

(−)
h ,β

]
, β = 1, 2, (46)

eαβ0 =
1

2

[
uα0,β + uβ0,α −

(+)

h ,α
uβ0
2h

+ uβ(x1, x2,
(−)
h , t)

(−)
h ,α

+uα(x1, x2,
(−)
h , t)

(−)
h ,β −

(+)

h ,β
uα0
2h

]
=

1

2

[
(hvα0),β +(hvβ0),α−

(+)

h ,α
2

vβ0 −
(+)

h ,β
2

vα0

]
+

1

2

[
uβ(x1, x2,

(−)
h , t)

(−)
h ,α + uα(x1, x2,

(−)
h , t)

(−)
h ,β

]
, α, β = 1, 2. (47)

Substituting (45)-(47) into (5), we get

X330 = λ
[
(hvγ0),γ −

1

2

(+)

h ,γvγ0 +
v30
2

]
+ λ
[
uγ(x1, x2,

(−)
h , t)

(−)
h ,γ

−u3(x1, x2,
(−)
h , t)

]
+ µv30 − 2µu3(x1, x2,

(−)
h , t), (48)
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X3β0 = µ
[
(hv30),β +

1

2
vβ0 −

(+)

h ,β
2

v30

]
−µ
[
uβ(x1, x2,

(−)
h , t)− u3(x1, x2,

(−)
h , t)

(−)
h ,β

]
β = 1, 2, (49)

Xαβ0 = λ
[
(hvγ0),γ −

1

2

(+)

h ,γvγ0 +
v30
2

]
δαβ + λ

[
uγ(x1, x2,

(−)
h , t)

(−)
h ,γ

−u3(x1, x2,
(−)
h , t)

]
δαβ + µ

[
(hvα0),β +(hvβ0),α−

(+)

h ,α
2

vβ0 −
(+)

h ,β
2

vα0

]
+µ
[
uβ(x1, x2,

(−)
h , t)

(−)
h ,α + uα(x1, x2,

(−)
h , t)

(−)
h ,β

]
, α, β = 1, 2. (50)

Substituting (48)-(50) into (44), we have the following system for Model VII

µ(hvα0),ββ +µ(hvβ0),αβ +λ(hvγ0),γα−
λ

2
(
(+)

h ,γvγ0),α +
λ

2
v30,α −

µ

2
(
(+)

h ,αvβ0),β

−µ
2

(
(+)

h ,βvα0),β +
1

2h

{[
λ
(

(hvγ0),γ −
1

2

(+)

h ,γvγ0 +
v30
2

)
δαβ

+µ
(

(hvα0),β +(hvβ0),α−
(+)

h ,α
2

vβ0 −
(+)

h ,β
2

vα0

)](−)
h ,β

−µ
(

(hv30),α +
1

2
vα0 −

(+)

h ,α
2

v30

)}
+Q(+)

ν α

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1

+λ
[
uγ(x1, x2,

(−)
h , t)

(−)
h ,γ − u3(x1, x2,

(−)
h , t)

]
,α

+µ
[
uβ(x1, x2,

(−)
h , t)

(−)
h ,α + uα(x1, x2,

(−)
h , t)

(−)
h ,β

]
,β

+
1

2h

[
λ
(
uγ(x1, x2,

(−)
h , t)

(−)
h ,γ − u3(x1, x2,

(−)
h , t)

)
δαβ

+µ
(
uβ(x1, x2,

(−)
h , t)

(−)
h ,α + uα(x1, x2,

(−)
h , t)

(−)
h ,β

)](−)
h ,β (51)

+
µ

2h

(
uα(x1, x2,

(−)
h , t)− u3(x1, x2,

(−)
h , t)

(−)
h ,α

)
+ Φα0 = ρh

∂2vα0
∂t2

, α = 1, 2,
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µ(hv30),ββ +
µ

2
vβ0,β −

µ

2

((+)

h ,β v30

)
,β +

1

2h

{
µ
[
(hv30),β +

1

2
vβ0 −

(+)

h ,β
2

v30

](−)
h ,β

−λ
[
(hvγ0),γ −

1

2

(+)

h ,γvγ0

]
− λ+ 2µ

2
v30

}
+Q(+)

ν 3

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1

−µ
[
uβ(x1, x2,

(−)
h , t)− u3(x1, x2,

(−)
h , t)

(−)
h ,β

]
,β

− 1

2h

{
µ
[
uβ(x1, x2,

(−)
h , t)− u3(x1, x2,

(−)
h , t)

(−)
h ,β

](−)
h ,β

−λ
[
uγ(x1, x2,

(−)
h , t)

(−)
h ,γ − u3(x1, x2,

(−)
h , t)

]
+ 2µu3(x1, x2,

(−)
h , t)

}
+Φ30 = ρh

∂2v30
∂t2

. (52)

Model VI and Model VIII follow from the Model V and Model VII after changing
direction of the x3–axis.

The well-known governing systems of Model I and Model II have the forms [1-3]

µ
[
(hvα0,β),β + (hvβ0,α),β

]
+ λ(hvγ0,γ),α +Q(+)

ν α

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1

+Q(−)
ν α

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1 + Φα0 = ρh

∂2vα0
∂t2

, α = 1, 2,

(53)

µ(hv30,β),β +Q(+)
ν 3

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1

+Q(−)
ν 3

√
(
(−)
h ,1 )2 + (

(−)
h ,2 )2 + 1 + Φ30 = ρh

∂2v30
∂t2

,

(54)

and [3]

µ(hvα0),ββ +(λ+ µ)(hvγ0),γα−(lnh),β{λδαβ(hvγ0),γ

+µ[(hvα0),β +(hvβ0),α ]} + 2µ Ψαβ,β(x1, x2, t) + λΨkk,α(x1, x2, t)− (lnh),β (55)

×[λδαβΨkk(x1, x2, t) + 2µ Ψαβ(x1, x2, t)]+Φα0(x1, x2, t) = ρh
∂2vα0
∂t2

, α = 1, 2;

µ(hv30),ββ −(lnh),β µ(hv30),β +2µ Ψ3β,β(x1, x2, t)

−2µ(lnh),β Ψ3β(x1, x2, t) + Φ30(x1, x2, t) = ρh
∂2v30
∂t2

, (56)

where

Ψ3β (x1, x2, t) :=
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1

2

[
u3

(
x1, x2,

(−)
h , t

)
(−)
h,β −u3

(
x1, x2,

(+)

h , t

)
(+)

h,β

+uβ

(
x1, x2,

(+)

h , t

)
− uβ

(
x1, x2,

(−)
h , t

)]
,

respectively.
Similarly, the following models can be constructed:
Model IX.

On the upper surface
(+)

h the stress vector is known,

on the lower surface
(−)
h the quantities (8) are known.

Model X.

On the upper surface
(+)

h the stress vector is known,

on the lower surface
(−)
h the quantities (9) are known.

Model XI.

On the upper surface
(+)

h the displacements are known,

on the lower surface
(−)
h the quantities (8) are known.

Model XII.

On the upper surface
(+)

h the displacements are known,

on the lower surface
(−)
h the quantities (9) are known.

Model XIII.

On the upper surface
(+)

h the quantities (8) are known,

on the lower surface
(−)
h the stress vector is known.
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Model XIV.

On the upper surface
(+)

h the quantities (9) are known,

on the lower surface
(−)
h the stress vector is known.

Model XV.

On the upper surface
(+)

h the quantities (8) are known,

on the lower surface
(−)
h the displacements are known.

Model XVI.

On the upper surface
(+)

h the quantities (9) are known,

on the lower surface
(−)
h the displacements are known.

Similar hierarchical models can be constructed for composite prismatic shells as
well.

3. Analysis of the Constructed Models

Models III-VIII are suggested in the present paper for the first time and, therefore,
are not studied at all. Model II, actually, is not investigated. Model I is studied suf-
ficiently well even in the case of cusped prismatic shells, i.e., in the case of prismatic
shells with a cusped edge ω0 ⊆ ∂ω, where the thickness 2h(x1, x2) vanishes:

ω0 := {(x1, x2) ∈ ∂ω : 2h(x1, x2) = 0}.

Evidently, ω0 is a closed set.
Dirichlet Problem. Find a solution vi0 ∈ C2(ω) ∩ C(ω), i = 1, 2, 3, of the

governing system in ω, satisfying the boundary conditions

vi0(x1, x2) = ϕi(x1, x2), (x1, x2) ∈ ∂ω, i = 1, 2, 3,

where ϕi, i = 1, 2, 3, are given continuous on ∂ω functions.
Keldysh Problem. Find a bounded solution vi0 ∈ C2(ω)∩C(ω\ω0), i = 1, 2, 3,

of the governing system in ω, satisfying the boundary conditions

vi0(x1, x2) = ϕi(x1, x2), (x1, x2) ∈ ∂ω\ω0, i = 1, 2, 3,

where ϕi, i = 1, 2, 3, are given continuous on (∂ω) \ ω0 functions.
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Here C2 is a class of twice continuously differentiable functions in the domain
under consideration; C is a class of continuous functions on the sets under consid-
eration.

Considering cusped prismatic shells within the framework of models I-XVI, gov-
erning systems are systems of partial differential equations with order degeneration.
Since the governing systems are not degenerate with respect to t by t = 0, setting
initial conditions do not posses peculiarities in contrast to setting boundary con-
ditions with respect to space variables at cusped edges.

The question of consideration of prismatic shells with cusped edges within the
framework of Model I was raised by I. Vekua [1, 2], concerning studies of the
governing system of the general N -th order approximation see [3] and references
therein. System (53),(54) was explored in [5,6] (see also [3] and references therein),
where the main peculiarities of the well-posedeness of boundary conditions in dis-
placements (i.e. for vi0, i = 1, 2, 3) are established:

on the non-cusped edge ∂ω\ω0 boundary conditions can always be prescribed;
on the cusped edge ω0

(i) boundary conditions should be prescribed (Dirichlet type problem) if

∂h

∂ν
= +∞; (57)

(ii) boundary conditions should not be prescribed (Keldysh type problem) if

∂h

∂ν
≥ 0, (58)

where ν is the inward normal to ω0 ⊆ ∂ω.
Criterion in the integral form is given in [7]:
on the cusped edge ω0

(i) boundary conditions should be prescribed if

Q∫
P

h−1dν < +∞; (59)

(ii) boundary conditions should not be prescribed if

Q∫
P

h−1dν = +∞, (60)

where P ∈ ω0, Q ∈ ω.
The last criterion in the N -th approximation looks like:
on the cusped edge boundary conditions for

vir, i = 1, 2, 3, r = 0, 1, ..., N,
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should be prescribed if

Q∫
P

h−2r−1dν < +∞

and should not be prescribed if

Q∫
P

h−2r−1dν = +∞.

Let us note that as it is easily seen from systems (53), (54); (55), (56); (22), (23),
and (32), (33) systems (53), (54),(22) and (32) with respect to vα0, α = 1, 2, and
equations (54), (56),(23) and (33) with respect to v30 we can consider separately.

If the thickness has the form

2h(x1, x2) = h0x
κ
2 , h0 = const > 0, κ = const ≥ 0, (61)

and ∂ω contains a segment of the x1-axis, then (57), (59) mean that 0 ≤ κ < 1,
while (58), (60) mean that κ ≥ 1. Evidently, if 0 ≤ κ < 1, a profile (a normal
cross-section of the prismatic shell at the cusped edge) has a smooth boundary,
while if κ ≥ 1, the profile is not smooth, namely, ends with an angle ϕ ∈ [0, π[
at cusped edge.

Cusped prismatic shells of the form (61) are investigated at most (see [3,8-10]
and references therein). When ω is a half-plane x2 ≥ 0, the Flamant, Cerutti, and
Carothers type problems are solved in explicit forms, which in the particular case
κ = 0 coincide with the classical Flamant, Cerutti, and Carothers formulas for the
plate of constant thickness [11-14].

Elastic equilibrium of a cusped prismatic shell under action of an arbitrary stress
vector concentrated along the cusped edge is solved in the explicit form (quadra-
tures) [15].

System (32) (Model IV) provided Ψ33 ≡ 0 and system (53) (Model I) coincide.
System (55) (Model II) provided Ψ33 ≡ 0 and system (22) (Model III) coincide.
So, systems (32) and (53) coincide up to the known summand Ψ33. Therefore, all

the results obtained for system (53) can appropriately be reformulated for system
(32).

Note that systems (32) and (53) for the symmetric (
(−)
h (x1, x2) = −

(+)

h (x1, x2))
prismatic shells of constant thickness 2h = const coincide with the system of the
plane strain.

Systems (22) and (55) coincide up to the known summand Ψ33,α, α =
1, 2. Therefore, systems (22) and (55) can be studied by the same methods and
the results will be qualitatively the same (e.g. in the sense of well-posedeness of
boundary value problems).

Equation (23) (Model III) and equation (54) (Model I) coincide up to the known
summand

µ[uβ(x1, x2,
(+)

h , t)− uβ(x1, x2,
(−)
h , t)],β.
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Hence, all the results obtained for equation (54) can appropriately be reformu-
lated for equation (23).

Equations (33) (Model IV) and (56) (Model II) coincide up to their known parts.
Therefore, they can be studied by the same methods and the results will be quali-
tatively the same (e.g. in the sense of well-posedeness of boundary value problems).

Similar analysis can be carried out with respect to Models V-XVI.
Considering models I-XVI in the case (61) with ∂ω containing a segment of

the x1-axis, we can take arbitrarily functions
(+)

h (x1, x2) and
(−)
h (x1, x2), provided

their difference
(+)

h (x1, x2) −
(−)
h (x1, x2), i.e., thickness varies according to (61). In

particular, (61) will be realized if we assume

(+)

h (x1, x2) =
(+)

h0x
κ
2 ,

(−)
h (x1, x2) =

(−)
h0x

κ
2 , κ = const ≥ 0,

(+)

h0 ,
(−)
h0 = const,

(+)

h0 −
(−)
h0 > 0.

If κ > 0, we have to do with a cusped prismatic shell with a cusped edge by
x2 = 0. If κ = 0, the prismatic shell will be of constant thickness h0, which in the

symmetric case
(−)
h = −

(+)

h will be a plate.
The following theorem is true [16] (compare with [17], where m1 = 0)

Theorem 3.1 : If the coefficients aα, α = 1, 2, and c of the equation

xmα

2 u,αα +aα(x1, x2)u,α +c(x1, x2)u = 0, c ≤ 0, mα = const ≥ 0, α = 1, 2,

are analytic in ω bounded by a sufficiently smooth arc (∂ω \ ω0) lying in the half-
plane x2 ≥ 0 and by a segment ω0 of the x1-axis, then

(i) if either m2 < 1, or m2 ≥ 1, a2(x1, x2) < xm2−1
2 in Īδ for some δ = const > 0,

where

Iδ := {(x1, x2) ∈ ω : 0 < x2 < δ},

the Dirichlet problem is correct;
(ii) if m2 ≥ 1, a2(x1, x2) ≥ xm2−1

2 in Iδ and a1(x1, x2) = O(xm1

2 ), x2 → 0+ (O
is the Landau symbol), the Keldysh problem is correct.

Remark 1 : If 1 < m2 < 2, b(x, 0) ≤ 0, the Dirichlet problem is correct.

Using the method applied in [18] (see pages 58, 68-74), it is not difficult to verify
that the theorem is also true for Hölder continuous c and aα, α = 1, 2, on ω,
provided:

(i) lim
x2→0+

x1−m2

2 a2(x1, x2) = a0 = const < 1 for (x1, 0) ∈ ω0 when 0 ≤ m2 < 1;

(ii) if a2(x
0
1, 0) = 0 for a fixed (x01, 0) ∈ ω0 when 1 < n < 2, then there exists

such a δ = const > 0 that a2(x
0
1, x2) = κ(x01, x2) · x2 with bounded κ(x01, x2) for

0 ≤ x2 < δ.
Since in each of Models I and II qualitative properties by setting boundary con-

ditions for v10, v20, and v30 are the same, in order to compare Model I and Model
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II for the sake of clearness and simplicity we assume v10 ≡ 0, (u1 ≡ 0),
v20 ≡ 0, (u2 ≡ 0), v30 = v30(x2), then we get

(
xκ2v30,2

)
,2

+ T1(x2) = 0, x2 ∈]0, L[ , L = const > 0, (62)

for Model I (by the way also for Model III),

(
xκ2v30

)
,22
− κx−12

(
xκ2v30

)
,2

+ T2(x2) = 0, x2 ∈]0, L[ , L = const > 0, (63)

for Model II (by the way also for Model IV), where

µ
h0
2
T1(x2) := Q(+)

ν 3

√
(
(+)

h ,2 )2 + 1 +Q(−)
ν 3

√
(
(−)
h ,2 )2 + 1 + Φ30,

µ
h0
2
T2(x2) := µ

[
u3(x2,

(−)
h , t)

(−)
h ,2−u3(x2,

(+)

h , t)
(+)

h ,2

]
,2

−µκx−12

[
u3(x2,

(−)
h , t)

(−)
h ,2−u3(x2,

(+)

h , t)
(+)

h ,2

]
+ Φ30

are known.
Note that for Model V and Model VII we have

(
xκ2v30

)
,22
− 1

h0
(
(+)

h ,2v30),2

+
x−κ2

µh20

{
µ
[
h0
(
xκ2v30

)
,2
−

(+)

h ,2v30
](−)
h ,2 −

λ+ 2µ

2
v30

}
+ T3(x2) = 0,

where

µ
h0
2
T3(x2) := µ

[
u3(x2,

(−)
h , t)

(−)
h ,2

]
,2 +Q(+)

ν 3

√
(
(+)

h ,2 )2 + 1

+
x−κ2

h0

[
µu3(x2,

(−)
h , t)

((−)
h ,2

)2
+ (λ+ 2µ)u3(x2,

(−)
h , t)

]
+ Φ30

is known. In particular,

x22v30,22 + κx2v30,2 +
{
κ
[ (+)

h0
h0

(
1− κ

(−)
h0
h0

)
− 1
]

−λ+ 2µ

µh20
x
2(1−κ)
2

}
v30 − x2−κ2 T3(x2) = 0,
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µ
h0
2
T3(x2) := µ

[
u3(x2,

(−)
h , t)κ

(−)
h0χ

κ−1
2

]
,2 +Q(+)

ν 3

√
(κ

(+)

h0 )2χ
2(κ−1)
2 + 1

+
µ(κ

(−)
h0 )2xκ−22

h0
u3(x2,

(−)
h , t) + (λ+ 2µ)

x−κ2

h0
u3(x2,

(−)
h , t) + Φ30.

General solutions of equations (62) and (63) have the forms

vI30(x2) =
1

κ− 1

x2∫
x0
2

(x−κ2 − ξ
−κ)T1(ξ)dξ + c1x

1−κ
2 + c2 for κ 6= 1 (64)

vI30(x2) =

x2∫
x0
2

T1(ξ)ln
ξ

x2
dξ + c1lnx2 + c2 for κ = 1 (65)

and

vII30(x2) =
x−κ2

κ+ 1

x2∫
x0
2

(xκ+1
2 − ξκ+1)ξ−κT2(ξ)dξ + c1x2 + c2x

−κ
2 , (66)

respectively, where x2 ∈]0, L[ and cα, α = 1, 2, are arbitrary constants.
Under some restriction on Tα(x2), α = 1, 2, the integral summands in (64)

and (65) become continuous on [0, L]. (64)-(66) can always satisfy the boundary
condition

v30(L) = vL30 = const (67)

at the non-cusped edge x2 = L. Taking into account (67), from (64)-(66) it follows
that either

c1 = Lκ−1
[
vL30−c2−

1

κ− 1

L∫
x0
2

(L−κ−ξ−κ)T1(ξ)dξ
]

for 0 ≤ κ < 1 and for κ > 1,

(68)

c1 = ln−1 L
[
vL30 − c2 −

L∫
x0
2

T1(ξ) ln
ξ

L
dξ
]
for κ = 1, (69)
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and

c1 = L−1
[
vL30 − c2L−κ −

L−κ

κ+ 1

L∫
x0
2

(Lκ+1 − ξκ+1)T2(ξ)dξ
]
for κ ≥ 0, (70)

respectively, or

c2 = vL30 − c1L1−κ − 1

κ− 1

L∫
x0
2

(L−κ − ξ−κ)T1(ξ)dξ for 0 ≤ κ < 1 and for κ > 1,

(71)

c2 = vL30 − c1L1−κ −
L∫

x0
2

T1(ξ) ln
ξ

L
dξ for κ = 1, (72)

and

c2 = Lκ
[
vL30 − c1L−

L−κ

κ+ 1

L∫
x0
2

(Lκ+1 − ξκ+1)T2(ξ)dξ
]
for κ ≥ 0, (73)

respectively.
Now we try to satisfy the boundary condition

v30(0) = v030 = const (74)

at the cusped edge x2 = 0. As is obvious, (64)-(66) are unbounded as x2 → 0+ by
κ > 1, κ = 1 and κ > 0, respectively, and in these cases (74) can not be fulfilled.
For boundedness of solutions we have to take c1 = 0 and c2 = 0 for (64), (65) and
(66), respectively. So, Keldysh type problem can be well-posed.

Unique bounded solutions v30 ∈ C2(]0, L[) of the Keldysh type problems (62),(67)
with κ ≥ 1 and (63), (67) with κ > 0, by virtue of (70)-(72), have the forms

vI30(x2) =
1

κ− 1

x2∫
0

(x−κ2 −ξ
−κ)T1(ξ)dξ+vL30−

1

κ− 1

L∫
0

(L−κ−ξ−κ)T1(ξ)dξ, κ > 1,

(provided T1(x2) is integrable on ]0, L[ and T1(x2) = O(xδ2), δ > κ−1, x2 → 0+)

vI30(x2) =

x2∫
0

T1(ξ) ln
ξ

x2
dξ + vL30 −

L∫
0

T1(ξ) ln
ξ

L
dξ, κ = 1,
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(provided T1(x2) is integrable and bounded on ]0, L[ ) and

vII30(x2) =
x−κ2

κ+ 1

x2∫
x0
2

(xκ+1
2 − ξκ+1)ξ−κT2(ξ)dξ

+L−1
[
vL30 −

L−κ

κ+ 1

L∫
x0
2

(Lκ+1 − ξκ+1)T2(ξ)dξ
]
x2, κ > 0,

(provided T2(ξ) is integrable on ]0, L[ and for κ ≥ 2

T2(x2) = O(xδ2), δ > κ− 2, x2 → 0+).

(64) and (66) can fulfil (74) if correspondingly 0 ≤ κ < 1 and κ = 0. In these
cases from (74) with x02 = 0, taking into account (68), (69), there follows that

c2 = v030,

provided Tα(x2), α = 1, 2, are integrable on [0, L].
Thus, unique solutions v30 ∈ C2(]0, L[)∩C([0, L]) of the Dirichlet type problems

(62), (67), (70) with 0 ≤ κ < 1 and (63), (67), (70) with κ = 0, have the forms

vI30(x2) =
1

κ− 1

x2∫
0

(x−κ2 − ξ
−κ)T1(ξ)dξ

+Lκ−1
[
vL30 − v030 −

1

κ− 1

L∫
0

(L−κ − ξ−κ)T1(ξ)dξ
]
x1−κ2 + v030, 0 ≤ κ < 1,

and

vII30(x2) =

x2∫
0

(x2 − ξ)T2(ξ)dξ + L−1
[
vL30 − v030 −

L∫
0

(L− ξ)T2(ξ)dξ
]
x2 + v030,

respectively.
So, we arrive at the following conclusion:
(i) If 0 ≤ κ < 1, solution (64) is continuous on [0, L], therefore boundary

conditions can be satisfied on both the non-cusped (x2 = L) and cusped (x2 = 0)
edges and by means of (64) a unique solution of the Dirichlet type boundary value
problem can be written in the explicit form;

(ii) If κ ≥ 1, taking c1 = 0 we avoid unboundedness of the solution (64) as
x2 → 0+ and, in view of (64), a unique solution can be constructed by means of a
boundary condition at the non-cusped edge (Keldysh type boundary value problem);

(iii) For any κ > 0 solution (65) is unbounded as x2 → 0+ unless c2 = 0 and if
c2 = 0, by virtue of (65), we can construct in the explicit form a unique solution
of the Keldysh problem with a prescribed value at the non-cusped edge (x2 = L);
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(iv) Unbounded solutions of Keldysh type problems (62), (67) and (63), (67)
are defined up to the summand c1x

1−κ
2 for κ > 1 (c1 lnx2 for κ = 1) and c2x

−κ
2 ,

respectively, where cα, α = 1, 2, are arbitrary constants.
From conclusions (i)-(iii) it is clear that the presence of a cusped edge depending,

on sharpening geometry at a cusped edge, causes change of the Dirichlet type prob-
lem by the Keldysh type problem for ensuring well-posedeness of boundary value
problems in displacements. Moveover, in contrast to Model I, where depending on
sharpening geometry of the cusped edge (in other words of the kind of degenera-
tion of equations under consideration) arise both the Dirichlet and Keldysh type
problems, in Model II presence of cusped edges always demands consideration of
the Keldysh type problem.

From (64), (65) it is easily seen that under obvious restrictions on T1(x2) the
boundary value problem, when on the non-cusped edge boundary conditon (67)
and on the cusped edge boundary conditon

X320(0) = lim
x2→0+

µhv30,β = X0 = const

are prescribed, is correct. The solution vI30 can be represented in the explicit form.
If on the non-cusped edge we set boundary conditon

X320(L) = XL = const,

then a solution vI30 will be determined up to the additive constant. If 0 ≤ κ < 1,
the last constant can be uniquely determined by boundary condition (74). Hence,
the last boundary value problem will be correct.

From (66) it is easily seen that under obvious restrictions on T2(x2) the boundary
value problem, when on the non-cusped edge boundary condition

X320(L) = µ
[h0

2

(
xκ2v30

)
,2

∣∣∣
x2=L

+ u3

(
x1, L,

(−)
h 0L

κ
)
κ
(−)
h 0L

κ−1

−u3
(
x1, L,

(+)

h0L
κ
)
κ
(+)

h0L
κ−1
]

= XL

is prescribed, a solution vII30 can be determined up to the addend c2x
−κ
2 and is

unbounded unless c2 = 0.

X320(0) = µ lim
x2→0+

{h0
2
xκ2

x2∫
x0
2

ξ−κT2(ξ)dξ

+
[
u3
(
x1, x2,

(−)
h0x

κ
2

)(−)
h0 − u3

(
x1, x2,

(+)

h0x
κ
2

)(+)

h0

]
κxκ−12

}
and can never be prescribed arbitrarily, i.e. in Model II cusped edges should be
released from boundary conditions.
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4. Conclusions

1) Hierarchical models for cusped, in general, elastic prismatic shells under mixed
conditions on the face surfaces are constructed. Such models are important in
applications, e.g., in the study of seismic processes [19].

2) In models I-IV equations charachterizing tension-compression (see, corre-
spondingly, systems (53), (55), (22), and (32)) and bending (more precisly de-
flection in N = 0 approximation (see, correspondingly, equations (54), (56), (23),
and (33)) can be considered separately. This is not the fact in the case of models
V-VIII.

3) Setting boundary conditions at edges in displacements depends on what is
considered to be known on the face surfaces, stresses or displacements; moreover,
assuming as known on the face surfaces at least one of the stress vector components,
it will depend on the sharpening geometry of the cusped edge. The criteria, when
the BCs are classical (Dirichlet type) or nonclassical (Keldysh type), are established
(compare with results in [3]). If on both the face surfaces only displacements are
assumed as known, at cusped edges neither displacement nor integrated stress
vectors can be prescribed. In other words, cusped edge should be released from
boundary conditions.

4) In the static case, in the N = 0 approximation, when the cusped prismatic
shell-like body projection is a half-plane x2 ≥ 0, the thickness 2h = h0x

κ
2 , h0 =

const > 0, κ = const ≥ 0, and at the edge x2 = 0 integrated stress vector (either
distributed but concentrated along the cusped edge or concentrated at point of
the cusped edge load) is applied, the problem is solved in the explicit form (in
quadratures). For κ > 0 prismatic shell-like body is cusped one; for κ = 0, in
particular, we have a plate of constant thickness.
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