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In this communications, the concept of Toplict graph of a tree is introduced. We present
characterization of graphs whose Toplict graph of a tree is planar, maximal outerplanar,
minimally nonouterplanar. Further, Also we establish a characterization of graphs whose
Toplict graph of a tree is Eularian and Hamiltonian.
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1. Introduction

The concept of pathos of a graph G was introduced by Harary [3], as a collection of
minimum number of line disjoint open paths whose union is G. The path number
of a graph G is the number of paths in pathos. The path number of a tree T is
equal to k where 2k is the number of odd degree vertices of T. Also the end vertices
of each path of any pathos of a tree are of odd degree.
The Toplict graph of a tree T denoted by Tn(T ) is defined as the graph whose

vertex set is the union of the set of edges, set of cutvertices and set of paths of
pathos of T in which two vertices are adjacent if and only if the corresponding
edges of T are adjacent, edges are incident to the cutvertex, the edge lies on the
corresponding path pi of pathos and two pathos have a common vertex. Since the
system of path of pathos for a tree T is not unique, the corresponding Toplict graph
of a tree T is either not unique.
The edgedegree of an edge uv of a tree T is the sum of the degrees of u and v. The

pathoslength is the number of edges which lie on a particular path Pi of pathos of
T. A pendent pathos is a path Pi of pathos having unit length which corresponds
to a pendent edge in T. A pathosvertex is a vertex in TL(T ) corresponding to the
path Pi of pathos in T. A graph is said to be minimally nonouterplanar if i(G) = 1.
All graphs considered here are finite, undirected and simple. We refer [3] for

unexplained terminology and notation..
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2. Preliminaries

The following will be useful in the proof of our results.

Theorem 2.1 : [3] If G is a (p,q) graph whose vertices have degree di then L(G)
has q vertices and qLedges, where qL = −q + 1

2

∑
d2i edges.

Theorem 2.2 : [3] A graph is planar if and only if it has no subgraph homeomor-

phic to K5 or K3,3.

Theorem 2.3 : [3] A graph is outerplanar if and only if it has no subgraph home-

omorphic to K4 or K2,3.

Theorem 2.4 : [5] A graph G is nonempty path if and only if it is a connected

graph with p = 2 vertices and
∑
d2i − 4p+ 6 = 0.

Theorem 2.5 : [5] The line graph L(G) of a graph is planar if and only if G is

planar, ∆(G) ≤ 4and if degv = 4, for a vertex v of G, then v is a cutvertex.

Theorem 2.6 : [3] The line graph L(G) of a graph G is outerplanar if and only

if degree of each vertex of G is at most three and every vertex of degree three is a

cutvertex.

Theorem 2.7 : [5] Every maximal outerplanar graph G with p vertices has (2p−3)

edges.

3. Toplict graph of a tree

Proposition 3.1: The edgedegree of an edge uv in a tree is odd if the degree of

one vertex is of odd degree.

Proposition 3.2: If the edge degree of an edge uv in a tree T is even (or odd)

and u and v are cutvertices then the corresponding vertex in Tn(T ) is of even

(odd)degree.

Proposition 3.3: The degree of the pathosvertex in Tn(T ) is equal to the

pathoslength of the corresponding path pi of pathos of T plus one.

Proposition 3.4: If the edge degree of an edge in a tree T is even (or odd) and

edge is an pendent edge then the corresponding vertex in Tn(T ) is of odd (or even)

degree.
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In the following theorem we obtain the number of vertices and edges in Tn(T ).

Theorem 3.5 : If T is a tree with p vertices, q edges whose vertices have degree di

and cutvertices c have degree cj then the Toplict graph of a tree Tn(T ) has (q+k+c)

vertices and 1
2

∑
d2i + [ni(ni − 1)/2]+

∑
cj edges where ni be the degree of the star

vi and k be the path number.

Proof : By definition of Tn(T ), the number of vertices is the sum of the number

of edges, number of cutvetices and the number of pathos of T. Hence Tn(T ) has

(p+k+c) vertices. The number of edges in Tn(T ) is the sum of the number of edges

in L(T), the number of edges which lie on the paths pi of pathos of T which is q,

the number of edges incident with cutvertices in T and the number of vertices ni

which lies on the pathos pi which is [ni(ni − 1)/2]. Hence the number of edges in

TL(T ) is −q+ 1
2

∑
d2i +q+[ni(ni−1)/2]+

∑
cj = = 1

2

∑
d2i +[ni(ni−1)/2]+

∑
cj .

�

Theorem 3.6 : For any tree T ̸= K2, Tn(T ) is non separable.

Proof : Suppose Tn(T ) is non separable. If T has m ≥ 3 cutvertices and n pendent

pathos, we have the following cases.

Case 1. For m = 1, T = K1,n, we have the following the subcases of case1.

subcase 1.1 If p is even then n = 0, the number of cutvertices in Tn(T ) = 0.

Subcase 1.2 If p is odd then n = 0 the pendent pathos is adjacent to the

remaining pathos. Clearly the number of cutvertices in Tn(T )=0.

Case 2. Let m > 1, with n pendent pathos. In L(T) each block is a complete

subgraph ⟨Kp⟩ of L(T) and Tn(T ) and this does not increase the number of cutver-

tex. Since at least two pathos have a vertex in common, so Tn(T ) does not contain

any pendent vertex. Hence it is nonseparable.

�

Theorem 3.7 : For any tree T, Tn(T ) is planar if and only if ∆(T ) ≤ 3.

Proof : Suppose Tn(T ) is planar. Assume that ∆(T ) ≥ 4. If there exists a vertex

v of degree 4 in T, then by theorem 2.5, L(T) has K4 as a subgraph. Also by the

definition of Tn(T ) the vertex v is adjacent to all the vertices of K4 and this gives

K5 as subgraph and two edges lie on one path of pathos and both pathos have a

vertex v in common. Clearly Tn(T ) has ⟨K5⟩ as a subgraph which is nonplanar, a
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contradiction.

For sufficiency, suppose every vertex of T lies on at most three edges. By the

definition of lict graph it is planar. Each block of lict graph is either K3 or K4.

The pathosvertex is adjacent to atmost two vertices of each block of lict graph.The

edges joining these blocks from the pathosvertices are adjacent to at most two

vertices of each block of L(T). Also the adjacency between the pathos does not

loose the planarity. This gives planar Tn(T ). �

Theorem 3.8 : For any tree T, Tn(T ) is outerplanar if and only if T is a path.

Proof : Suppose Tn(T ) is outerplanar. Assume tha T has a vertex v of degree 3.

The edges incident to v and the cutvertex v form K4 as a subgraph in Tn(T ) .

Hence Tn(T ) is nonouterplanar, a contradiction.

Conversely, suppose T is a path Pi of length t ≥ 1. For t = 1, the result is

obvious. For t > 1, by definition each block of lict graph is K3and has (t -1) blocks.

Also T has exactly one path of pathos and the pathosvertex is adjacent to atmost

two vertices of each block of lict graph. The pathosvertex together with each block

form (t-1) number of K4 − x subgraphs in Tn(T ). Hence Tn(T ) is outerplanar. �

Theorem 3.9 : For any tree T, Tn(T ) is maximal outerplanar if and only if T is

a path.

Proof : Suppose Tn(T ) is a maximal outerplanar. Then by theorem 3.5 Tn(T ) is

non separable and hence T is connected.

If Tn(T ) is K2, then T is so. Let T be any connected tree with p ≥ 2 vertices, q

edges,c cutvertices and path number k. Clearly Tn(T ) has (q+ k+ c) vertices and

qL = 1
2

∑
d2i + [ni(ni − 1)/2] +

∑
cj edges. Since Tn(T ) is maximal outerplanar,

by theorem 2.7, Tn(T ) has 2(q+ k+ c)− 3 edges. Hence 1
2

∑
d2i + [ni(ni − 1)/2] +∑

cj = 2(q + k + c) − 3. For any path T, k = 1, ni = 0 and
∑
cj = 2c. We have

1
2

∑
d2i + 0+

∑
cj = 2(q + k + c)− 3. ⇒ 1

2

∑
d2i + 2c = 2q + 2k + 2c− 3 = 2q − 1.

⇒ 1
2

∑
d2i = 2(p− 1)− 1 = 2p− 3. ⇒

∑
d2i = 4p− 6 is true. ⇒

∑
d2i − 4p+6 = 0.

By theorem 2.4, it follows that T is a non empty path. Hence necessity is proved.

For sufficiency, suppose T is a path. We have considered two cases.

Case(1). Suppose T is K2. Then Tn(T ) is K2. Hence it is maximal outerplanar.

Case(2). Suppose T is a nonempty path. We prove that Tn(T ) maximal out-

erplanar by an induction on the number of vertices n ≥ 3 of T. Clearly Tn(P3),
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which is maximal outerplanar. By definition, Tn(T ) of a path with 3 vertices is

K4−x, which is maximal outerplanar. As the inductive hypothesis, let the Tn(T )

of a non empty path T with n vertices be maximal outerplanar. We now show that

the Tn(T ) of a path T ′ with (n + 1) vertices is maximal outerplanar. First we

prove that it is outerplanar.

Let the vertex and edge sequence of the path T ′ be v1e1v2e2...vn−1en−1envn+1.

Without loss of generality, T ′−vn+1 = T . By inductive hypothesis, Tn(T ) is maxi-

mal outerplanar. Now the vertex vn+1 is one vertex more in T’n(T ) than in Tn(T ).

Also there are only four edges (en−1, en), (en−1, cn−1), (cn−1, en) and (en, pi) more

in Tn(T ). Clearly the induced subgraph on the vertices en−1, en, cn−1, R is not

K4 . Hence Tn(T ) is outerplanar. Since Tn(T ) is maximal outerplanar, it has

2(q + c + 1) − 3 edges. The outerplanar graph Tn(T ) has 2(q + c + 1) − 3 + 4 =

2[(q + 1) + (c+ 1) + 1]− 3 edges. Hence Tn(T ) is maximal outerplanar.

�

Theorem 3.10 : For any tree T, Tn(T ) is not minimally nonouterplanar

Proof : Proof follows from the above theorem. �

Theorem 3.11 : For any tree T, Tn(T ) is always noneulerian.

Proof : We have the following cases.

Case 1. Suppose every edge of a tree T is of edgedegree odd. By proposion 3.2,

T contains alternative even and odd degree vertices. Since every path of pathos

starts and ends at odd degree vertices, the path must pass through at least one

vertex of even degree. By definition of Tn(T ), degree of each vertex in Tn(T ),

except pathos vertex is even. Since the corresponding pathos are adjacent. Hence

Tn(T ) is noneulerian.

Case 2. Suppose at least one edge of edgedegree even. Then Tn(T ) contains at

least one vertex of odd degree. Hence Tn(T ) is non eulerian. �

Theorem 3.12 : For any tree T, Tn(T ) is always Hamiltonian.

Proof : We have the following cases.

Case 1. If T is a path then it has exactly one path of pathos. Let V [L(T )] =

e1, e2, ...en. In Tn(T ), the pathosvertex w is adjacent to e1, e2...en. Hence V [Tn(T )]

= e1, e2...en, c1, c2...cj ∪w form a closed path w, e1, e2...en, c1, c2...cj ∪w containing
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all the vertices of Tn(T ), clearly Tn(T ) is hamiltonian.

Case 2. T has cutvertex of even degree and is not a path. Again we consider

the following sub cases.

Subcase 2.1. T has exactly one vertex of even degree and is a star with n

vertices. Then L(T ) = Kn, which contains a hamiltonian cycle e1, e2...en, e1. For

Kn it has n/2 paths of pathos with pathosvertex as p1, p2, ...pn/2. By definition

of Tn(T ), each pathosvertex is adjacent to exactly two vertices of L(T). Clearly

V [Tn(T )] = e1, c1, e2, c2...en−1, cn−2, en, w∪p1, p2, ...pn/2. Then there exists a cycle

containing all the vertices of TL(T ) and is a hamiltonian cycle. Hence Tn(T ) is

hamiltonian.

Subcase 2.2. T has more than one cutvertex of even degree. Then in L(T),

each block is complete and every cutvertex lies on exactly two blocks of L(T). Let

V [L(T )] = e1, e2...en. Since T has pi pathosvertices,i > 1, then V[L(T)] contains

e1, e2, ...en,∪p1, p2, pn/2 vertices. But each pi is adjacent to exactly two vertices of

en and it forms a cycle p1, e1, c1, e2, c2, e3, e4, p2, en−1, en−1, cn, p1 containing all

vertices of Tn(T ) . Hence Tn(T ) is hamiltonian.

Case 3. Suppose T has at least one odd degree vertex. If T has exactly one

cutvertex which is of odd degree, then G = K1,n and L(T ) = Kn and a number

of path of pathos is n+1
2 in which there exists at least one path of pathos pi,

1 ≤ i ≤ n+1
2 incident to v and an end vertex of T. In Tn(T ), each pathosvertex is

adjacent to exactly two vertices of Kn. Clearly there exist one vertex of Kn joined

by a pathosvertex pj , j < i and the paths pi, pj are adjacent if both have a vertex v

in common. Clearly e1, e2, e3, ...pi, pj , e1,form a cycle contains all vertices of Tn(T ).

Hence Tn(T ) is hamiltonian.

Case 4. Suppose T has more than one cutvertex of odd degree. Since every

path of pathos starts and ends at odd degree vertices. In drawing different paths

of pathos there exists at least one path of pathos pi which starts from ∆(T ) and

ends at an end vertex of T. Then in Tn(T ), pi ∈ V [Tn(T )], let e1, e2, ...ei be the

number of edges incident with vertices of ∆(T ). Then e1, e2, ...en form a complete

subgraph. In Tn(T ), pi is adjacent with exactly one vertex of ei and the vertex pj

which is a common vertex with pi. Hence p1, e1, c1, e2, c2, e3, e4, p2, en−1, en−1, cn, p1

form a cycle containing all vertices of Tn(T ). Hence TL(T ) is hamiltonian. �
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