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In this paper, we consider a finite difference semi-discretization for the 1-d wave equation with
a boundary feedback. First, we prove that the exponential decay of the semi-discrete energy is
not uniform (with respect to the mesh size) by showing that the constant of the observability
inequality blows up. This is due to the fact that spurious high frequency oscillations are
present in the semi-discrete system. We prove after that a uniform exponential decay holds if
the high frequencies are filtered using multiplier technique and non harmonic Fourier series.
Then we compare between these two methods.
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1. Introduction

Numerical controllability and stabilizability have attracted a lot of interest in recent
years. Finite-difference, finite element, mixed finite element and polynomial based
Galerkin approximation methods have been applied [1, 7, 9, 10, 15, 17, 18, 23–25].
J. Infante and E. Zuazua [9] showed that, when the finite difference method or the
classical element method are used in the semi-discretization, the boundary observ-
ability is not uniform with respect to the mesh size. This is due to the spurious
high frequency oscillations present in the semi-discrete model. Some remedies have
been proposed to damp out these high-frequencies, like filtering technique [9, 23],
Tychonoff regularization [9], mixed finite element method [7].

Tebou and Zuazua [17] considered a finite-difference space semi-discretization
of a locally damped 1-D and 2-D wave equations in the interval and the unit
square domain, respectively, and proved that adding a suitable vanishing numerical
viscosity term leads to a uniform exponential decay of the energy of solutions. In
[18], the authors considered a finite-difference space semi-discretization of a 1-D
boundary damped wave equation and proved that the exponential decay is not
uniform with respect to the net-spacing size, then they proved that a suitable
vanishing numerical viscosity term leads to a uniform exponential decay.

Our purpose in this paper is to treat a finite-difference space semi-discretization
of 1-D boundary damped wave equation considered in [18], using filtering technique
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which consists of cutting a high frequencies present in the semi-discrete model.
This technique is used in [9] on the context of boundary observability for 1-D wave
equation with Dirichlet boundary conditions.

Let Ω = (0, 1) of R and consider the 1− d damped wave equation:ytt − yxx = 0, 0 < x < 1, t > 0
y(0, t) = 0, yx(1, t) + αyt(1, t) = 0, t > 0
y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1

(1)

where (y0, y1) ∈ H1
0 (0, 1)× L2(0, 1), and α is a positive constant.

This system arises in many important models for distributed parameter control
problems. In particular, in the model of a vibrating string, where the solution y(t, x)
represents the transverse displacement of the string, and in models for acoustic
pressure fields, the solution y(t, x) represents the fluid pressure (see, [2–4, 16] for
more examples). Note that this type of problems is first studied by Banks et all. [1],
where they developed a general approach based on the mixed finite element method
and polynomial based Galerkin approximation that preserve uniform exponential
decay rate.

The energy of system (1) is given by

E(t) =
1

2

∫ 1

0
(|yt(x, t)|2 + |yx(x, t)|2)dx, ∀t ≥ 0,

and it obeys the following dissipation law

dE(t)

dt
= −α|yt(1, t)|2.

It is also known that this energy satisfies, for some M > 0 and ω > 0 independent
of the solution, the estimate (see [5, 8, 11–14, 16, 20–22])

E(t) ≤Me−ωtE(0), ∀t ≥ 0. (2)

In this paper, we study a uniform boundary stabilizability of the finite difference
semi-discretization of (1). For this purpose, we set the space step h by h = 1

N+1 ,
where N ∈ N is a given integer. Denote by yj the approximation of the solution y
of (1) at the point space xj = jh for any j = 0, ..., N + 1. Then we introduce the
following finite-difference space semi-discretization of (1)


y
′′

j = yj+1−2yj+yj−1

h2 , 0 < t < T, j = 1, ..., N

y0 = 0, yN+1−yN
h + αy

′

N+1 = 0, 0 < t < T
yj(0) = y0

j , y
′

j(0) = y1
j , j = 1, ..., N.

(3)

The energy of system (3) is given by

Eh(y, t) =
h

2

N∑
j=0

[
|y′j(t)|2 +

∣∣∣∣yj+1(t)− yj(t)
h

∣∣∣∣2
]
,
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which is an approximation of the continuous energy. The derivative of Eh is given
by

E
′

h(y, t) = −α|y′N+1|2, (4)

which shows that Eh is a nonincreasing function. For system (3), we prove that a
decay rate of type (2) is not uniform with respect to the net-spacing h. We will
show that this is equivalent to a non uniform observability for the corresponding
conservative system


u
′′

j = uj+1−2uj+uj−1

h2 , 0 < t < T, j = 1, ..., N

u0 = 0, uN+1 = uN , 0 < t < T
uj(0) = u0

j , u
′

j(0) = u1
j , j = 1, ..., N.

(5)

Roughly speaking, we show that the constant C in the following observability
inequality, satisfied by the solutions of (5)

Eh(u, 0) ≤ C
∫ T

0
|u′N+1|2dt (6)

blows up for small h where

Eh(u, t) =
h

2

N∑
j=0

[
|u′j(t)|2 +

∣∣∣∣uj+1(t)− uj(t)
h

∣∣∣∣2
]
. (7)

We prove after that a uniform exponential decay holds if the high frequencies
are filtered using multiplier technique and non harmonic Fourier series.

2. Non uniform exponential decay

2.1. The spectral analysis of the semi-discrete problem

In this section, we give the eigenvalues and their eigenvectors of the semi-discrete
problem (5). We also study some of their relationship.

Consider the eigenvalue problem associated with (5)

{
−ϕj+1−2ϕj+ϕj−1

h2 = λϕj , j = 1, ..., N
ϕ0 = 0, ϕN+1 = ϕN .

(8)

The eigenvalues and eigenvectors of (8) can be given explicitly, see [18], by

{
λk = 4

h2 sin2
(

(2k+1)πh
2(2−h)

)
, k = 0, ..., N − 1

ϕk,j = sin( (2k+1)πjh
2−h ) , j = 0, ..., N.

(9)
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Therefore, the solution of system (5) may be expressed as

~u(t) =

N−1∑
k=0

[
αke

i
√
λk t + βke

−i
√
λk t
]
~ϕk,

with ~u(t) = (u1(t), ..., uN (t)). The last formula can also be written as

~u(t) =
∑
k

ake
iµk t~ϕk,

with µk =
√
λk for k ≥ 0 and µk = −

√
λ−k for k < 0 and ~ϕ−k = ~ϕk. This last

form will be used in this paper.
We have the following properties of the eigenvectors of (8).

Lemma 2.1: For any eigenvector ~ϕ with eigenvalue λ of system (8) the following
identities hold

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 = λ

N∑
j=1

ϕ2
j . (10)

h

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 =
λh2(2− h)

4− λh2

∣∣∣ϕN
h

∣∣∣2 . (11)

Proof : Multiplying (8) by ϕj , we get

− 1

h2

N∑
j=1

(ϕj+1 − 2ϕj + ϕj−1)ϕj = λ

N∑
j=1

ϕ2
j ,

which implies that

− 1

h2

N∑
j=1

(
ϕj+1ϕj − 2ϕ2

j + ϕjϕj−1

)
= λ

N∑
j=1

ϕ2
j .

Therefore

1

h2

N∑
j=1

(
2ϕ2

j − 2ϕj+1ϕj
)

+
1

h2
ϕ2
N = λ

N∑
j=1

ϕ2
j , (12)

which yields

1

h2

N∑
j=0

(
ϕ2
j+1 − 2ϕj+1ϕj + ϕ2

j

)
= λ

N∑
j=1

ϕ2
j .
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This achieves the proof of (10). To show the identity (11), we multiply (8) by
j (ϕj+1 − ϕj−1) and obtain

1

h2

N∑
j=1

j (ϕj+1 − 2ϕj + ϕj−1) (ϕj+1 − ϕj−1) = −λ
N∑
j=1

jϕj (ϕj+1 − ϕj−1) .

Hence,

1

h2

N∑
j=1

[
(j − 1)ϕ2

j − 2jϕj+1ϕj + 2(j + 1)ϕj+1ϕj − (j + 1)ϕ2
j

]
− 1

h2
ϕ2
N

= −λ
N∑
j=1

[jϕj+1ϕj − (j + 1)ϕj+1ϕj ]− λ(N + 1)ϕ2
N ,

and then

1

h2

N∑
j=1

[
−2ϕ2

j + 2ϕj+1ϕj
]
− 1

h2
ϕ2
N = λ

N∑
j=1

ϕj+1ϕj −
λ

h
ϕ2
N .

This implies again that

(
λ

h
− 1

h2

)
ϕ2
N =

2

h2

N∑
j=1

ϕ2
j +

(
λ− 2

h2

) N∑
j=1

ϕj+1ϕj . (13)

Now, using (12), we derive that

2

h2

N∑
j=1

ϕj+1ϕj =

(
2

h2
− λ
) N∑
j=1

ϕ2
j +

1

h2
ϕ2
N . (14)

Normalizing the eigenvector ~ϕ, i.e. h

N∑
j=1

ϕ2
j = 1, from (13), (14) we obtain

N∑
j=1

ϕj+1ϕj =
h

2

(
2

h2
− λ
)

+
1

2
ϕ2
N ,

(
λ− 2

h2

) N∑
j=1

ϕj+1ϕj = − 2

h3
+

(
λ

h
− 1

h2

)
ϕ2
N .
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Identity (10) and the last two identities provide that

λh2(2− h)

4− λh2

∣∣∣ϕN
h

∣∣∣2 = λ = h

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 ,
which is exactly the claim. �

2.2. Non uniform observability

In this section, we show that the observability constant C in inequality (6) blows
up as h→ 0.

Theorem 2.2 : For any T > 0, we have

sup
u sol. of (5)

[
Eh(0)∫ T

0

∣∣u′N (t)
∣∣2 dt

]
−→∞ as h→ 0.

Proof : Consider the particular solution of (5)

~u(t) = cos
(√

λN−1 t
)
~ϕN−1.

For this solution, one has

Eh(0) =
h

2

N∑
j=0

∣∣∣∣ϕN−1,j+1 − ϕN−1,j

h

∣∣∣∣2

=
λN−1h

2(2− h)

2(4− λN−1h2)

∣∣∣ϕN−1,N

h

∣∣∣2 ,
and∫ T

0

∣∣u′N ∣∣2 dt = λN−1 |ϕN−1,N |2
∫ T

0
sin2

(√
λN−1 t

)
dt ≤ TλN−1 |ϕN−1,N |2 .

Then we have

Eh(0)∫ T
0

∣∣u′N ∣∣2 dt ≥
2− h

2T (4− λN−1h2)
. (15)

Moreover, in view of (9), we have

λN−1h
2 = 4 sin2

(
(2N − 1)πh

2(2− h)

)
= 4 sin2

(
2Nπh

2(2− h)
− hπ

2(2− h)

)
= 4 sin2

(
(1− h)π

(2− h)
− hπ

2(2− h)

)
−→ 4 as h→ 0.

Thus, the result is established. �
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Remark 1 :
The inequality (15) shows that the constant on the boundary observability in-

equality blows up as the mesh-size tends to zero. This result is in agreement with
the negative observability results established in [6, 9, 15, 23–25].

In [18], the inequality similar to (15) is of the form

Eh(0) ≥ C(T )

h2

∫ T

0

∣∣u′N ∣∣2 dt,
which is sufficient to prove Theorem 2.2, but in our paper we need the inequality
given by (15) which is useful for filtering technique. Note that the blows up of
the right side of (15) is coming from the term 4− λN−1h

2, so the idea of filtering
technique is to prevent this term do not converge to 0 by choosing a number γ < 4
such that λN−1h

2 ≤ γ.

2.3. Non uniform exponential decay

To show the main result of this section we need the following lemma proved in [18].

Lemma 2.3: If there exist positive constants M and ω independent of h such
that for all y0 = (y0

j )1≤j≤N and y1 = (y1
j )1≤j≤N in R

N ,

Eh(y, t) ≤Me−ωtEh(y, 0) , t ≥ 0 , ∀0 < h < 1,

then there exist positive constants C and T independent of h such that for all
u0 = (u0

j )1≤j≤N and u1 = (u1
j )1≤j≤N in R

N ,

Eh(u, 0) ≤ C
∫ T

0
|u′N+1|2dt.

Finally, the following main result is an immediate consequence of Theorem 2.2
and the above lemma.

Theorem 2.4 : The exponential decay of Eh to zero is not uniform with respect
to the mesh size, i.e., there exist no positive constants M and ω (independent of
h) such that for all y0 and y1 in R

N

Eh(y, t) ≤Me−ωtEh(y, 0) , t ≥ 0, 0 < h < 1.

3. Uniform exponential decay by the filtering technique

In order to obtain a positive counterpart to Theorem 2.4, we use a standard tech-
nique using in [9, 15, 23–25], which consists of filtering the high frequencies. We
will adopt the non harmonic Fourier series and multiplier methods. For this, we
introduce the following class Ch(γ) of initial data of (5) and (3) generated by
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(a) N = 9 and γ = 3.5 (b) N = 19 and γ = 3.5

(c) N = 29 and γ = 3.5 (d) N = 39 and γ = 3.5

Figure 1. Number of eigenvalues to be cut for a given γ

eigenvectors of (8) associated with eigenvalues such that µ2h2 ≤ γ

Ch(γ) :=

 ∑
µ2

kh
2≤γ

akϕk


for any 0 < γ < 4.

The schemes in Figure 1 show the number of eigenvalues to be cut off for a given
0 < γ < 4. In figure 1(a) where N = 9 and γ = 3.5, are three largest eigenvalues
to be cut off. In figure 1(d) where N = 39 and γ = 3.5, 9 are largest eigenvalues
to be cut off.

3.1. Multiplier technique

3.1.1. Uniform observability for filtered solutions

Using the multiplier technique, we prove the uniformity of the observability con-
stant for the filtered solutions of (5). Show first some preliminary results.

As in the continuous case, we show that the discrete energy Eh in (7) is conserved
in time.

Lemma 3.1: For any solution u of (5), we have

Eh(u, t) = Eh(u, 0) , 0 ≤ t ≤ T.
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Proof : By derivation of (7), we obtain

E′h(u, t) = h

N∑
j=1

[
u′ju

′′

j +

(
uj+1 − uj

h

)(
u′j+1 − u′j

h

)]

+h

[
u
′

0u
′′

0 +

(
u1 − u0

h

)(
u′1 − u′0

h

)]

=
1

h

N∑
j=1

[
u′j (uj+1 − 2uj + uj−1) + (uj+1 − uj)

(
u′j+1 − u′j

)]
+

1

h
u1u

′
1

=
1

h

N∑
j=1

[
uj+1u

′
j − 2uju

′
j + uj−1u

′
j + uj+1u

′
j+1 − uj+1u

′
j − uju′j+1 + uju

′
j

]
+

1

h
u1u

′
1 =

1

h

[
u0u

′
1 − uNu′N+1 − u1u

′
1 + uN+1u

′
N+1

]
+

1

h
u1u

′
1 = 0.

�

To show our main result of this section, we need as well the following two lemmas.

Lemma 3.2: For any solution u of (5) and any h > 0 we have

h

2

N∑
j=0

∫ T

0

[
u′ju
′
j+1 +

∣∣∣∣uj+1 − uj
h

∣∣∣∣2
]
dt+Xh(t)|T0 =

1

2

∫ T

0

∣∣u′N ∣∣2 dt, (16)

with

Xh(t) = h

N∑
j=1

j

(
uj+1 − uj−1

2

)
u′j .

Proof : Multiplying (5) by j(uj+1−uj−1

2 ) and integrating over [0, T ], we obtain

N∑
j=1

∫ T

0
ju′′j

(
uj+1 − uj−1

2

)
dt (17)

=
1

h2

N∑
j=1

∫ T

0
j

(
uj+1 − uj−1

2

)
(uj+1 − 2uj + uj−1) dt.
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On the other hand, we have

N∑
j=1

∫ T

0
ju′′j

(
uj+1 − uj−1

2

)
dt =

1

h
Xh(t)|T0 −

1

2

N∑
j=1

∫ T

0
ju′j

(
u′j+1 − u′j−1

)
dt

=
1

h
Xh(t)|T0 −

1

2

N∑
j=0

∫ T

0

(
ju′ju

′
j+1 − (j + 1)u′ju

′
j+1

)
dt

− N + 1

2
u′Nu

′
N+1 =

1

h
Xh(t)|T0 +

1

2

N∑
j=0

∫ T

0
u′ju
′
j+1dt−

N + 1

2

∣∣u′N ∣∣2 . (18)

We see also that

1

h2

N∑
j=1

∫ T

0
j

(
uj+1 − uj−1

2

)
(uj+1 − 2uj + uj−1) dt

=
1

2h2

N∑
j=1

∫ T

0

(
ju2

j+1 − ju2
j−1 − 2juj+1uj + 2juj−1uj

)
dt

=
1

2h2

N∑
j=1

∫ T

0

(
−2u2

j + 2ujuj+1

)
dt− 1

2h2
|uN |2

= −1

2

N∑
j=0

∫ T

0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 dt. (19)

Finally, (18) and (19) in (17) yield the result. �

Lemma 3.3: For any solution u of (5) and any h > 0, we have

−h
N∑
j=0

∫ T

0

∣∣u′j∣∣2 dt+ h

N∑
j=0

∫ T

0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 dt+ Yh(t)|T0 = 0,

with

Yh(t) = h

N∑
j=0

u′juj .

Proof : Multiplying equation (5) by uj , we obtain

N∑
j=1

∫ T

0
u′′jujdt =

1

h2

N∑
j=1

∫ T

0
uj(uj+1 − 2uj + uj−1)dt. (20)
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Therefore,

N∑
j=1

∫ T

0
u′′jujdt =

1

h
Yh(t)|T0 −

N∑
j=1

∫ T

0

∣∣u′j∣∣2 dt. (21)

In the other hand, we have

1

h2

N∑
j=1

∫ T

0
uj(uj+1 − 2uj + uj−1)dt =

1

h2

N∑
j=1

∫ T

0
(uj+1uj − 2u2

j + uj−1uj)dt

= − 1

h2

N∑
j=0

∫ T

0
(u2
j+1 − 2uj+1uj + u2

j )dt

= −
N∑
j=0

∫ T

0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 dt. (22)

Thus, (21), (22) and (20) allow us to conclude. �

Lemma 3.4: We have the following inequality

∣∣∣Xh(t)− γ

8
Yh(t)

∣∣∣ ≤√1 +
3γ

16λ0
Eh(u, 0).

Proof : We have

Xh(t)− γ

8
Yh(t) = h

N∑
j=1

u′j

[
j
uj+1 − uj−1

2
− γ

8
uj

]
.

Then

∣∣∣Xh(t)− γ

8
Yh(t)

∣∣∣ ≤
h N∑

j=1

∣∣u′j∣∣2
 1

2
h N∑

j=1

∣∣∣∣j uj+1 − uj−1

2
− γ

8
uj

∣∣∣∣2
 1

2

. (23)

On the other hand, we have

h

N∑
j=1

∣∣∣∣j uj+1 − uj−1

2
− γ

8
uj

∣∣∣∣2

= h

N∑
j=1

[
j2

4
|uj+1 − uj−1|2 +

γ2

64
u2
j −

γj

8
(uj+1 − uj−1)uj

]
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≤ h
N∑
j=1

[
j2

2
|uj+1 − uj |2 +

j2

2
|uj − uj−1|2 +

γ2

64
u2
j −

γj

8
uj+1uj +

γj

8
ujuj−1

]

≤ h
N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 +
γ2h

64

N∑
j=0

u2
j +

γh

8

N∑
j=0

uj+1uj −
γ

8
u2
N

≤ h
N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 +

(
γ2

64
+
γ

8

)
h

N∑
j=0

u2
j −

γh

16

N∑
j=0

(
2u2

j − 2uj+1uj
)
− γ

8
u2
N

≤ h
N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 +

(
3γ

16

)
h

N∑
j=0

u2
j −

γh

16

N∑
j=0

|uj+1 − uj |2 +
γh

16
u2
N+1 −

γ

8
u2
N

≤
(

1− γh2

16

)
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 +
3γ

16λ0
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 +

(
γh

16
− γ

8

)
u2
N

≤
(

1− γh2

16
+

3γ

16λ0

)
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 . (24)

Combining (23) and (24) we deduce, by Young inequality, that

∣∣∣Xh(t)− γ

8
Yh(t)

∣∣∣ ≤
√

1− γh2

16
+

3γ

16λ0

h N∑
j=1

∣∣u′j∣∣2
 1

2
h N∑

j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2
 1

2

≤
√

1 +
3γ

16λ0
Eh(0).

�

Now, we can announce our main result in this subsection.

Theorem 3.5 : Assume that γ < 4. Then there exists T1(γ) > 2 such that for
all T > T1(γ), there exists C1(T, γ) such that

Eh(u, 0) ≤ C1(T, γ)

∫ T

0

∣∣u′N (t)
∣∣2 dt,

for every solution, with u0 and u1 in the class Ch(γ), and all h.

Proof : Let u be a solution of (5) where u0 and u1 in the class Ch(γ). Using
Lemma 3.1, equality (16) may be written as

TEh(u, 0) +
h

2

N∑
j=0

∫ T

0

[
u′ju
′
j+1 −

∣∣u′j∣∣2] dt+Xh(t)|T0 =
1

2

∫ T

0

∣∣u′N ∣∣2 dt. (25)
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For the second term of (25), we have

N∑
j=0

[
u′ju
′
j+1 −

∣∣u′j∣∣2] = −1

2

N∑
j=0

∣∣u′j+1 − u′j
∣∣2 +

1

2

∣∣u′N ∣∣2
= −1

2

∑
µ2

kh
2≤γ

|ak|2µ4
kh

2
N∑
j=1

|ϕk,j |2 +
1

2

∣∣u′N ∣∣2
≥ −1

2
γ
∑

µ2
kh

2≤γ

|ak|2µ2
k

N∑
j=1

|ϕk,j |2 +
1

2

∣∣u′N ∣∣2 .

Hence,

N∑
j=0

[
u′ju
′
j+1 −

∣∣u′j∣∣2] ≥ −1

2
γ

N∑
j=0

∣∣u′j∣∣2 +
1

2

∣∣u′N ∣∣2 .
From (25) and the last estimate, we deduce that

TEh(u, 0)− γ

4
h

N∑
j=0

∫ T

0

∣∣u′j∣∣2 dt+
h

4

∫ T

0

∣∣u′N ∣∣2 dt+Xh(t)|T0 ≤
1

2

∫ T

0

∣∣u′N ∣∣2 dt. (26)

Lemma 3.3 implies that

h

N∑
j=1

∫ T

0

∣∣u′j∣∣2 dt = TEh(u, 0) +
1

2
Yh(t)|T0 . (27)

Reporting (27) in (26) we get

T
(

1− γ

4

)
Eh(u, 0)− γ

8
Yh(t)|T0 +Xh(t)|T0 ≤

2− h
4

∫ T

0

∣∣u′N ∣∣2 dt. (28)

Combining (28) and Lemma 3.4 we deduce that

[
T
(

1− γ

4

)
− 2

√
1 +

3γ

16λ0

]
Eh(u, 0) ≤ 1

2

∫ T

0

∣∣u′N ∣∣2 dt, (29)

which implies that

Eh(u, 0) ≤ 1

2
(
T
(
1− γ

4

)
− 2
√

1 + 3γ
16λ0

) ∫ T

0

∣∣u′N ∣∣2 dt,
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for

T >
2
√

1 + 3γ
16λ0

1− γ
4

.

Thus Theorem 3.5 holds with

T1(γ) =
2
√

1 + 3γ
16λ0

1− γ
4

, (30)

and

C1(T, γ) =
1

2
(
T
(
1− γ

4

)
− 2
√

1 + 3γ
16λ0

) . (31)

�

3.1.2. Uniform exponential decay for filtered solutions

We set y = u+ z with u0
j = y0

j and u1
j = y1

j where y0 ∈ Ch(γ), y1 ∈ Ch(γ) and z
solves the problem

z
′′

j −
zj+1−2zj+zj−1

h2 = 0 , j = 1, ..., N

z0 = 0 , zN+1−zN
h = −αy′N+1 , j = 0, ..., N

zj(0) = 0, v
′

j(0) = 0, j = 1, ..., N.

(32)

We have the following Lemma

Lemma 3.6: Let T > 0. There exists C > 0 and K > 0 such that for every,
0 < h < 1, we have∫ T

0
|z′N+1|2dt ≤ C

∫ T

0
|y′N+1|2dt+KEh(y, 0).

Proof :
The energy of system (32) is given by

Eh(z, t) =
h

2

N∑
j=0

[
|z′j(t)|2 +

∣∣∣∣zj+1(t)− zj(t)
h

∣∣∣∣2
]

and its derivative is given by

E
′

h(z, t) = −αz′N+1y
′

N+1.

Applying Young’s inequality, we get

Eh(z, t) ≤ α2

4ε

∫ T

0
|y′N+1|2dt+ ε

∫ T

0
|z′N+1|2dt.
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Multiplying (32) by j zj+1−zj−1

2 and integrating over [0, T ], we obtain

h

N∑
j=1

jz′j

(
zj+1 − zj−1

2

)
|T0 − h

N∑
j=1

∫ T

0
jz′j

(
z′j+1 − z′j−1

2

)
dt

− h
N∑
j=1

∫ T

0
j

(
zj+1 − zj−1

2

)(
zj+1 − 2zj + zj−1

h2

)
dt = 0. (33)

We have

h

N∑
j=1

jz′j

(
zj+1 − zj−1

2

)
|T0 (34)

= h2
N∑
j=1

jz′j

(
zj+1 − zj

2h

)
|T0 + h2

N−1∑
j=1

(j + 1)z′j+1

(
zj+1 − zj

2h

)
|T0 ,

−h
N∑
j=1

∫ T

0
jz′j

(
z′j+1 − z′j−1

2

)
dt =

h

2

N∑
j=0

∫ T

0
|z′j |2dt+

h

4

∫ T

0
|z′N+1|2dt

−h
3

4

N∑
j=0

∫ T

0
|z
′
j+1 − z′j
h

|2dt+
α2h2

4

∫ T

0
|y′′N+1|2dt (35)

− 1

4

∫ T

0
(|z′N+1|2 + |z′N |2)dt,

and

−h
N∑
j=1

∫ T

0
j(
zj+1 − zj−1

2
)(
zj+1 − 2zj + zj−1

h2
)dt (36)

=
h

2

N∑
j=0

∫ T

0

∣∣∣∣z′j+1 − z′j
h

∣∣∣∣2 dt− α2

2

∫ T

0
|y′N+1|2dt.

Reporting (34), (35) and (36) in (33) we get

h3

4

N∑
j=0

∫ T

0
|z
′
j+1 − z′j
h

|2dt+
1− h

4

∫ T

0
|z′N+1|2dt+

1

4

∫ T

0
|z′N |2dt

= h2
N∑
j=0

jz′j

(
zj+1 − zj

2h

)
|T0 + h2

N−1∑
j=0

(j + 1)z′j+1

(
zj+1 − zj

2h

)
|T0

+

∫ T

0
E(z, t)dt− α2

2

∫ T

0
|y′N+1|2dt+

α2h2

4

∫ T

0
|y′′N+1|2dt.
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Using (34), we obtain

h3

4

N∑
j=0

∫ T

0
|z
′
j+1 − z′j
h

|2dt+
3− 2h

8

∫ T

0
|z′N+1|2dt

≤ α2

4ε
(1 + T )

∫ T

0
|y′N+1|2dt+ ε(1 + T )

∫ T

0
|z′N+1|2dt+

α2h2

4

∫ T

0
|y′′N+1|2dt.

We choose ε = 3−2h
16(1+T ) , so that

∫ T

0
|z′N+1|2dt ≤ 64α2(1 + T )2

∫ T

0
|y′N+1|2dt+ 4α2h2

∫ T

0
|y′′N+1|2dt.

On the other hand, it is easy to check that (see [18])

4α2h2

∫ T

0
|y′′N+1|2dt ≤ KEh(y, 0).

Finally, we get

∫ T

0
|z′N+1|2dt ≤ 64α2(1 + T )2

∫ T

0
|y′N+1|2dt+KEh(y, 0).

which gives the proof with C = 64α2(1 + T )2. �

Now, we can announce our main result in this subsection.

Theorem 3.7 : The exponential decay of Eh to zero is uniform with respect to
the mesh size in the range Ch(γ), i.e., there exist positive constants M1 and ω1

independent of h such that for all y0 and y1 in the class Ch(γ),

Eh(y, t) ≤M1e
−ωtEh(y, 0) , t ≥ 0 , 0 < h < 1.

Proof : From (29) and y = u+ z, we get

[
T
(

1− γ

4

)
− 2

√
1 +

3γ

16λ0

]
Eh(u, 0) ≤ 1

2

∫ T

0

∣∣u′N+1

∣∣2 dt
≤
∫ T

0

∣∣z′N+1

∣∣2 dt+

∫ T

0

∣∣y′N+1

∣∣2 dt.
By Lemma 3.6, we have[

T
(

1− γ

4

)
− 2

√
1 +

3γ

16λ0
−K

]
Eh(u, 0) ≤ (C + 1)

∫ T

0

∣∣y′N+1

∣∣2 dt.
On the other hand, we have Eh(y, 0) = Eh(u, 0). Therefore, for
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T >
(

2
√

1 + 3γ
16λ0

+K
)
/
(
1− γ

4

)
, we get

Eh(y, 0) ≤ (C + 1)

[
T
(

1− γ

4

)
− 2

√
1 +

3γ

16λ0
−K

]−1 ∫ T

0

∣∣y′N+1

∣∣2 dt.
Using (4), we obtain

Eh(y, T ) ≤ Eh(y, 0) ≤ α−1(C+1)

[
T
(

1− γ

4

)
− 2

√
1 +

3γ

16λ0
−K

]−1∫ T

0
−E′h(y, t)dt.

Then, we obtain

Eh(y, T ) ≤ C ′

C ′ + 1
Eh(y, 0),

with C ′ = α−1(C + 1)
[
T
(
1− γ

4

)
− 2
√

1 + 3γ
16λ0
−K

]−1

.

As the system (3) is invariant by translation, we can deduce that for all n ∈ N

Eh(y, (n+ 1)T ) ≤ C ′

C ′ + 1
Eh(y, nT ).

By iteration, we get

Eh(y, (n+ 1)T ) ≤
(

C ′

C ′ + 1

)n+1

Eh(y, 0).

Therefore

Eh(y, (n+ 1)T ) ≤ e−ω1(n+1)TEh(y, 0),

with w1 = 1
T ln

(
C′+1
C′

)
.

For t > 0, there exists n ∈ N such that nT ≤ t ≤ (n+ 1)T . Using (4), we get

Eh(y, t) ≤ Eh(y, nT ).

which implies that

Eh(y, t) ≤ e−ω1nTEh(y, 0).

Hence

Eh(y, t) ≤ C ′ + 1

C ′
e−ω1(n+1)TEh(y, 0).

Using the inequality t < (n+ 1)T , we get

Eh(y, t) ≤ C ′ + 1

C ′
e−ω1tEh(y, 0).
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This establishes the result with M1 = C′+1
C′ . �

References

[1] H.T. Banks, K. Ito, and B. Wang, Exponentially stable approximations of weakly damped wave equa-
tions, Internat. Ser. Numer. Math., 100 (1991), 1-33

[2] H.T. Banks, S.L. Keeling, R.J. Silcox, Optimal control techniques for active noise suppression, In:
Proceedings 27th IEEE Conference on Dec. and Control, Austin, (1988), 2006-2011

[3] H.T. Banks, S.L. Keeling, R.J. Silcox, and C. Wang, Linear quadratic tracking problem in Hilbert
space: Application to optimal active noise suppression, Proc. 5th IFAC Symp. on Control of DPS (A.
El-Jai, M. Amouroux, eds.), Perpignan, France, June, (1989), 17-22

[4] H.T. Banks, G. Propst, R.J. Silcox, A Comparison of Time Domain Boundary Conditions for Acous-
tic Waves in Wwave Guides, ICASE Rep. No. 9127, NASA Langley Res. Ctr., Hampton, VA (1991)

[5] C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabi-
lization of waves from the boundary, SIAM J. Control Opt., 30 (1992), 1024-1065

[6] H. Bouslous, H. El Boujaoui, and L. Maniar, Uniform boundary stabilization of the finite difference
semi-discretization of the 2-D wave equation, Afr. Mat. (DOI) 10.1007/s13370-013-0141-y. (2013)

[7] C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-D wave equation derived
from a mixed finite element method, Numerische Mathematik, 102 (2006), 413-462

[8] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a
bounded domain, J. Math. Pures Appl., 58 (1979), 249-274

[9] J.A. Infante, E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave
equation, Math. Model. Num. An., 33 (1999), 407-438

[10] A.E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z.,
41 (1936), 367-379

[11] V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control Opt., 29 (1991),
197-208

[12] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM. Masson-John
Wiley, Paris (1994)

[13] V. Komornik, E. Zuazua, A direct method for the boundary stabilization of the wave equation, J.
Math. Pures Appl., 69 (1990), 33-54

[14] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J.
Differ. Equ., 50 (1983), 163-182

[15] L. Leon, E. Zuazua, Boundary controllability of the finite-difference space semi-discretizations of the
beam equation, ESAIM Control Opt. Calc. Var., 8 (2002), 827-862

[16] J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev.,
30 (1988), 1-68

[17] L.T. Tebou, E. Zuazua, Uniform exponential long time decay for the space semi-discretization of
a locally damped wave equation via an artificial numerical viscosity, Numer. Math., 95(3) (2003),
563-598

[18] L.T. Tebou, E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of
the 1-d wave equation, Adv. Comput. Math., 26 (2007), 337-365

[19] M. Negreanu and E. Zuazua, Discrete Ingham Inequalities and Applications, SIAM J. NUMER.
ANAL., 44 (2006), 412-448

[20] J.P. Quinn, D.L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic
equations with boundary damping, Proc. Roy. Soc. Edinb. Sect., A 77 (1977), 97-127

[21] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent
progress and open questions, SIAM Rev., 20(4) (1978), 639-739

[22] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J.
Control Optim., 28 (1990), 466-477

[23] E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave
equation in the square, J. Math. Pures Appl., (9) 78(5) (1999), 523-563

[24] E. Zuazua, Controllability of partial differential equations and its semi-discrete approximations, Dis-
cret. Contin. Dyn. Syst., 8(2) (2002), 469-513

[25] E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods,
SIAM Rev., 47(2) (2005), 197-243


