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Abstract. IIt is proved that the tensor completion is permutable with the operations of
direct product and direct limit of exponential groups and, but in generally, is not permutable
with the Cartesian product and the inverse limit of exponential groups.
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Introduction

The notion of an exponential R-group, where R is an arbitrary associative ring with
unity, was introduced by R. Lyndon [1], Myasnikov and Remeslennikov [2] refined the notion
of an R-group by introducing an additional axiom. The new concept of an R-group is a
direct generalization of the concept of an R-module to the case of noncommutative groups.
Amaglobeli and Remeslennikov [3] called R-groups with that additional axiom MR-groups. It
turned out that all the previously studied Lyndon R-groups are in fact MR-groups (including
Lyndon’s free Z[t]-group FZ[t]). In the present paper, we examine only those R-groups that are
MR-groups. To simplify the notation, throughout what follows (unless specified otherwise),
by an R-group we mean an MR-group, and denote the class of all R-groups by MR. The
role of tensor extension of a scalar ring for modules is well known. An exact analog of this
construction for an arbitrary R-group-tensor completion-was defined in [2]. A particular
technique of constructing the tensor completion of a given R-group was offered in [4]. A
systematic study of R-groups was started in [3-9]. Note that the results of these 3 papers
have proven to be very useful in solving Tarski’s well-known problems. In this paper [2] it
is illustrated that the notion of a tensor completion plays the determining role in studying
exponential groups. In this paper we investigate the question concerning the permutability
a tensor completion functor with the basic groups operations.

1. Preliminary information and statements of problems

We recall basic definitions and facts following [1, 2]. Let Lgr =
{
·,−1 , e

}
be a group

language (signature), where · is a binary multiplication operation,−1 is a unary inversion
operation, and e is a constant symbol for the identity of a group. In what follows, unless
otherwise stated, R denotes an arbitrary fixed associative (possibly noncommutative!) ring
with unity 1. We enrich the group language Lgr to a language LR

gr = Lgr ∪ {fα(g)|α ∈ R},
where fα(g) is a unary algebraic operation corresponding to raising to a power α.

Definition 1.1. [1]. A set G is called a Lyndon R-group if the operations ·,−1 , e,
{fα(g)|α ∈ R} are defined on it, and the following axioms (below the expression fα(g) is
written as gα for brevity) hold:

(1) group axioms;
(2) for all g, h ∈ G and α, β ∈ R

g1 = g, g0 = e, eα = e; (1.1)



42 Nadiradze T.

gα+β = gα · gβ, gαβ = (gα)β; (1.2)

(h−1gh)α = h−1gαh; (1.3)

Denote by LR the category of Lyndon R-groups. Such groups will be called groups with
exponents in R or R-exponential groups.

The axioms above are identities in the language LR
gr, so the class LR is a variety of algebraic

systems in LR
gr, and general theorems of universal algebra imply that we may well speak about

R-homomorphisms, free R-groups, varieties of R-groups, quasivarieites of R-groups, and so
on.

There exist Abelian Lyndon R-groups which are not R-modules; see [10] where the struc-
ture of a free Abelian Lyndon R-group is studied in detail. In [2], added to the Lyndon
axioms is an extra axiom scheme-namely, the following series of quasi-identities:

(MR-axiom) ∀g, h [g, h] = e⇒ (gh)α = gαhα, α ∈ R, (1.4)

where [g, h] = g−1h−1gh.
Definition 1.2. [2]. A group G ∈ LR is called an MR-group if G satisfies the MR-axiom

(1.4).
Denote by MR the class of all R-groups with exponents in R satisfying the MR-axiom

(1.4). By definition, LR ⊃MR and, moreover, every Abelian R-group inMR is an R-module
and vice versa. The majority of natural examples of exponential R-groups belong to the class
MR. An arbitrary group is a Z-group in the class MZ; a divisible Abelian group from LQ
belongs toMQ; a group of exponent n is a Z/nZ -exponential MR-group; a free exponential
Lyndon R-group is an R-exponential MR-group; an arbitrary pro-p-group is an exponential
Zp-group in the classMZpwhere Zp is the ring of p-adic integers; for other examples, see [2].

In this paper, we study groups in the class MR. In what follows, therefore, unless
otherwise stated, by an R-group we always mean a group inMR.

The classMR is a quasivariety in the signature LR
gr. Let N be some variety of LR-groups.

Consider the intersection N ∩MR = NR. The class NR is also a quasivariety in the language
LR

gr, so it contains free R-groups and has a theory of defining relations. Moreover, NR is
closed under taking R-subgroups and we can compute R-factor groups in it [11]. Despite the
fact that classes NR are quasivarieties, we may well consider them as varieties within the
quasivariety MR, i.e., as relative Birkhoff classes. For this reason, we find it convenient to
call them varieties of R-groups.

Properly speaking, for any groupG ∈ LR, concepts such as anR-subgroup, R-generatedness,
a normal R-subgroup, etc., are introduced in a common way (see [2]). In particular, a homo-
morphism of R-groups ϕ : G → G∗ is called an R-homomorphism if ϕ(gα) = ϕ(g)α for any
g ∈ Gand any

α ∈ R.

Definition 1.3. [2]. Let G ∈ LR. For g, h ∈ G and α ∈ R, the element

(g, h)α = h−αg−α(gh)α

is called an α-commutator of the elements g and h. It is straightforward to verify that for
G ∈ LR, the following hold:

(gh)α = gαhα(g, h)α, (1.5)

(g, h)−1 = [h−1, g−1], (1.6)

f−1(g, h)αf =
(
f−1gf, f−1hf

)
α
, (1.7)
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G ∈MR ⇔ ([g, h] = e⇒ (g, h)α = e) . (1.8)

The last equivalence leads to a definition of an MR-ideal.
Definition 1.4. [2]. Let G ∈ LR. A normal R-subgroup H �G is called anMR-ideal if,

for any g, h ∈ G, the fact that [g, h] ∈ H implies (g, h)α ∈ H for any α ∈ R.
In what follows,MR-ideals H in G are often called R-ideals and are denoted as H�RG.

In [2], it was shown that if ϕ : G → G∗ is an R-homomorphism of groups from MR, then
kerϕ is an R-ideal in G, and if H is an R-ideal in G ∈MR, then G/H ∈MR.

Proposition 1.1. Let G ∈ LR.
(1) Intersection of any nonempty family of R-ideals in G is an R-ideal.
(2) For any subset Y ⊆ G, there exists at least (w.r.t. inclusion) R-ideal in G containing

Y .
Proof. The proof is standard.
Definition 1.5. Let G ∈ LR and Y ⊆ G. Denote by idR(Y ) the least (w.r.t. inclusion)

R-ideal in G containing Y . The structure of R-ideals is clarified by the following:
Proposition 1.2. Let G ∈ LR and Y ⊆ G. Then idR(Y ) is a union of the following

ascending chain of R-subgroups in G:

H0 ≤ H1 ≤ H2 ≤ · · · ≤ Hn ≤ ,

where H0 is a normal R-subgroup generated by Y , and

Hi+1 = 〈Hi, (g1,g2)α| [g1,g2] ∈ Hi, α ∈ R〉R.

Note that all subgroups Hi, are normal subgroups in G.
Proof. By the definition of an R-ideal, all Hi, are contained in idR(Y ). Equation (1.7)

implies that all Hi, are normal R-subgroups in G, and so therefore their union
⋃
i

Hi is

a normal subgroup. Also by construction it is straightforward to verify that
⋃
i

Hi, is an

R-ideal. Consequently, idR(Y ) =
⋃
i

Hi.

Proposition 1.3. Let G ∈ LR and Y ⊆ G. For any R-endomorphism if φ : G→G,

φ (idR (Y )) ≤ idR (φ(Y )) .

In particular, if φ is an R-automorphism, then

φ (idR (Y )) = idR (φ(Y )) .

Proof. In the notation of Proposition 1.2, it suffices to show that for anyi ∈ N,

φ (Hi (Y )) ≤ Hi (φ (Y )) ,

where Hi (Y ) (Hi (φ (Y )) resp.) is the subgroup Hi constructed in Proposition 1.2 for the
set Y (φ (Y ) resp.). Clearly, φ (H0 (Y )) ≤ H0 (φ (Y )). By induction, we can assume that
φ (Hi (Y )) ≤ Hi (φ (Y )). The definition of Hi+1 (Y ) implies that

φ (Hi+1 (Y )) ≤
〈
φ (Hi (Y )) , φ

(
(g1,g2)α

)
| [g1,g2] ∈ Hi (Y) , α ∈ R

〉
R

(1.9)
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Note that [g1,g2] ∈ Hi (Y ) entails φ ([g1,g2]) = [φ (g1) , φ (g2)] ∈ Hi (φ (Y )) . Consequently,

(φ (g1) , φ(g2))α ∈ Hi+1 (φ (Y )) . (1.10)

Then
φ

(
(g1,g2)α

)
= φ(g2−αg1

−α (g1g2)
α)

= φ(g2)
−αφ(g1)

−α(φ(g1)φ(g2))
α

= (φ (g1) , φ(g2))α.

Now (1.10) yields (φ (g1) , φ(g2))α ∈ Hi+1 (φ (Y )) , and by (1.9), φ (Hi+1 (Y )) ≤ Hi+1 (φ (Y )) .
It remains to use induction.

Corollary 1.1. Let G ∈ LR and Y ⊆ G. If Y is invariant under all R-endomorphisms of
G, then the ideal idR (Y ) is invariant under all R-endomorphisms of G.

The tensor completion operation plays a decisive role in studying exponential R-groups.
It naturally generalizes the notion of extension of a ring of scalars for modules to the non-
commutative case. Tensor completion is used in defining free constructions in the classMR,
including the concept of a free R-group.

Definition 1.6. Let G be an R-group and let µ : R → S be a ring homomorphism.
Then an S-group Gs,µis called the tensor S-completion of the R-group G if Gs,µ satisfies the
following universal property:

(1) there exists a homomorphism λ : G → Gs,µ, compatible with µ (i.e., λ (gα) =
(λ (g))µ(α) for all g ∈ Gand a ∈ R) such that λ(G) S-generates Gs,µ, i.e. 〈λ(G)〉S = Gs,µ;

(2) for any S-group H and any homomorphism ϕ : G → H compatible with µ, there
exists an S-homomorphism ψ : Gs,µ → H making this diagram

commutative.
For a fixed ring homomorphism µ : R→ S, group homomorphisms such as λand ϕ from

the definition above, compatible with µ, will further be called simply R-homomorphisms.
Notice that if G is an Abelian R-group, then

GS,µ ∼= G⊗
R
S

is the tensor product of an R-module G and a ring S. In [2], it was proved that for any
R-group G and any homomorphism µ : R → S, the tensor completion GS,µ. exists and is
unique up to R-homomorphism.

Below the ring homomorphism µ : R→ S will be fixed, and so instead of GS,µ, in proofs
we will use just the entry GS . In applications, µ is most often a ring embedding, but in that
case, also, an R-homomorphism λ : G→ Gsis not always an embedding. A general sufficient
condition under which λ is an embedding can be found in [2, Prop. 11]. Groups that are
isomorphically embedded in their tensor completion over a ring R were dealt with in [5].

Let G ∈ LR, 1 ∈ I. Denote by
∏
Gi and

∏
Gi the Cartesian and the groups G respec-

tively. Let G ∈
∏
Gi, g = (. . . , gi, . . . ) , α ∈ R. Define an action of R on G by coordinates

gα = (. . . , gi
α, . . . ) .

G Gs,µ

H

λ

φ
ψ
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It can be immediately verified that if all the groups Gi, satisfy an axiom from (1.1)-(1.4)

then the groups
∏
Gi and

∏
Gi satisfy the same axiom. Thus, we have proved

Proposition 1.4. The classes LR andMR are closed with respect to direct and Cartesian
products.

If in the standard definitions of direct and inverse spectrums one considers only R-
homomorphisms then it is not difficult to prove

Proposition 1.5. The classes LR and MR are closed with respect to direct and inverse
limit.

It is proved in [10] that in Abelian group category the operations of direct product of
groups, of direct and inverse limits have a universal property. The corresponding actions in
exponential group category have analogous properties. Here we restrict ourselves only to the
formulation of corresponding universal properties.

Proposition 1.6. (The universal property of direct products). Let ϕi : Gi → H be an
H-homomorphisms, i ∈ I. Then the diagrams

where ρi are inclusion maps [ϕi (Gi) , ϕj (Gj)] = e, i 6= j, it is possible to replace the dotted
line by the uniquely defined R-homomorphism ψ (not depending on i) so that all the diagrams
convert into commutative ones.

Denote by G∗ = lim−→Gi the limit group of the direct spectrum G = {Gi(i ∈ I);πj
i }. Given

R-homomorphisms σi : Gi → H for which the diagrams

are commutative, there exists one and only one homomorphism σ : G∗ → H such that all the
diagrams

are commutative.

Denote by G∗ = lim←−Gi the limit group of the inverse spectrum G = {Gi(i ∈ I), πj
i }.

Proposition 1.7. (the universal property of inverse limits). Let H be an R-group and

Gi

∏
i

Gi

H

ρi

φi

ψ

(i ∈ I),

Gi Gj

H

πj
i

σi
σj

(i ≤ j);

Gi H

G∗

σi

πi σ
(i ∈ I, πi is a projection of Gi into G)
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let σi : H → Gi be R-homomorphisms for which the diagrams

are commutative, there exists one and only one homomorphism σ : H → G∗ such that all the
diagrams

are commutative.

2. Construction of tensor completion

In this section we come up with a method for constructing tensor completion using the
apparatus of combinatorial group theory [5,9].

Case 1. Let µ : R → S be an epimorphism. Then S = R/M , where M = kerµ. Let G
be an arbitrary MR-group,

G0 = {g ∈ G| g = fα for some f ∈ G,α ∈ R},

and let Gµ = id(G0) be an MR-ideal generated by G0. Then the factor group G = G/Gµ is
an MS -group under the induced action of S on G = (gGµ)β = gαGµ, where α is an element
such that µ (α) = β. Denote by λ : G → G/Gµ, the canonical homomorphism of Gonto
G/Gµ.

Theorem 2.1. Let µ : R→ S be a ring epimorphism. Then GS ∼= G/Gµ where MS-group
G/Gµ is defined as above.

Proof. Let ϕ : G → H be an R-homomorphism of G onto an MR-group H consistent
with µ. Then ker ϕ ≥ Gµ, and so there exists an S-homomorphism ψ : GS → H making the
following diagram commute:

Example. Let R = Z be the ring of integers, S = Znthe ring of integers modulo n,
µ : Z → Zn the natural homomorphism. Then let Gµ = Gnis a subgroup of G generated by
n-powers of elements in G and GS ∼= G/Gn is a maximal factor group of G of period n.

Case 2. Let µ be an embedding. Suppose G is a partial MR-group and µ : R → S
is a ring embedding. We describe how to construct tensor S-completion for G. Recall the
definition of a free product with amalgamated subgroup (see, e.g., [12]).

H

Gj Gi

σj
σi

πj
i

(i ≤ j)

H G∗

Gi

σ

πi (i ∈ I, πi is a projection of G∗ into Gi)

G GS

H

λ

φ
∃ψ
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Let hi ≤ Gi be groups, i = 1, 2,and let an epimorphism ϕ : H1 → H2 be fixed. We call G
the free product of groups G1 and G2 with subgroups H1 and H2 amalgamated with respect
to ϕ, and we define G = ∗ (G1, G2,H1,H2, ϕ) if G satisfies the following universal property:

(a) there exist homomorphisms λ1 : G1 → G and , λ2 : G2 → G such that G is generated
by λ1(G1) and λ2(G2);

(b) for any group H and for any homomorphisms ψ1 : G1 → H and ψ2 : G2 → H
consistent with ϕ, there exists a homomorphism θ : G→ H such that the diagram

is commutative. If G = 〈X1|R1〉 and G = 〈X2|R2〉 are presentations of G1 and G2 by
generators and defining relations, then

G = 〈X1 ∪X2|R1 ∪ R2 ∪ T〉 ,

where T = {ϕ (h1) = h2| ∀h1 ∈ H1} is a presentation ofG by generators and defining relations.
We embark on the construction of tensor completion GS proceeding in steps.
Elementary step. Let M be a maximal Abelian subgroup of a partial MR-group G.

Consequently, M is a partial R-module and, therefore, a partial S-module. Denote MS ≡
M ⊗

S
S by MS . Then MS is an S-module, and we let iM : M → MS be a canonical map,

which is a partial R-homomorphism. Put G1
0 = ∗(G,MS ,M, iM (M), iM ).

For the image λ1(g) of an element g ∈ G in the group G1
0, raising to a power α ∈ S is

defined by a formula λ1(g)α = λ1 (gα) for those α ∈ S for which gα is defined in the group G.
Similarly, we define a partial action of S on the image λ2(MS) in G1

0 of the group MS . It is
easy to see that the thus defined action is correct and the group G1

0 is a partial group in the
class PKS (axioms (1.1) and (1.2) are satisfied). Let N = idM (1), i.e, the least M-ideal in
G1

0 making the factor group G1
0/N a partial MS-group. Let G1 = G1

0/N and η : G1
0 → G1

0/N
be the natural homomorphism. Denote by i1 : G→ G1 partial R-homomorphism induced by
the maps i1 : G → G1

0 and η : G1
0 → G1

0/N . We say that the group G1 is obtained from G
by an elementary M-step using a subgroup M . Similarly, we can define the concept of an
elementary L-step in the category PLS .

Lemma 2.1. (homomorphism extension). Let ϕ be a partial R-homomorphism of an
MR-group G into an MS-group H. Then there exists a partial S-homomorphism ψ : G1 → H
such that the diagram

is commutative.
Proof. By construction, the group G1

0 is generated by the subgroups i1(G) and η(MS).
For i1(g), g ∈ G, put ψ(i1(G)) = ϕ(g). The restriction of to M induces a homomorphism

G

G1 G2

H

θ

λ1

ψ1

λ2

ψ2

(θ ◦ λ1 = ψ1, θ ◦ λ2 = ψ2)

G G1

H

i1

φ
ψ
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M → H and, therefore, an S-homomorphism ϕM : MS → H consistent with iM : M →MS .
The universal property of free products with amalgamated subgroup yields a homomorphism
ψ0 : G −→ H extending the maps ϕ and ϕM . Since H is an MS -group, the M -ideal n lies
in the kernel of ψ0 Then ψ0 induces the desired partial S-homomorphism ψ : G1 → H.

Nonlimit step. The outcome of a first elementary step is that we managed to raise the
images of elements of the maximal Abelian subgroup M to powers in the ring S. In the
noncommutative case, it is natural to continue the construction by taking a second step, a
third step, ..., a kth step, k ∈ N, and obtain groups Gk and partial S-homomorphisms ik :
Gk−1 → Gk. The last homomorphisms make it possible to define a partial S-homomorphism
πs

r : Gr → Gs for any index pair (r, s), r < s . The system G = {G|k ∈ N,πs
r(r < s)} is a

direct spectrum.
Limit step. Let Gω be the limit group of the direct spectrum G and let πω

k be the
projection of a group Gk into Gω. The homomorphism extension lemma is naturally proved
also for the group Gω.

(It suffices to recall the universal property of a direct limit). If the group Gω is not an MS -
group, then we continue taking the following steps: Gω+1 = (Gω)1, Gω+2 = (Gω+1)1, Gω+3 =
(Gω+2)1, . . . . The procedure can always be arranged so that there exists an ordinal v with
which Gv is already MS -group. At every step conditions (1) and (2) in the definition of a
group GS were satisfied, so Gv is the tensor S-completion for G.

3. Commutation of the functor of tensor completion with group operations

In this section, we examine the questions of the commutation of the tensor completion
with the operations of direct and Cartesian products and direct and inverse limits.

Theorem 3.1. The functor of tensor completion is permutable with a direct product. In
other words, if G =

∏
j

Gj then

GS =
∏
j

Gj
S (3.1)

Before proving the theorem, let us formulate and prove the following lemma.
Lemma 3.1. Let for each j there exist an R-homomorphism ϕi : Gi → H, where H is

an R-group, and also
[ϕi (Gi) , ϕj (Gj)] = e (3.2)

for all pairs i, j, where i 6= j. Then there exists an R-homomorphism ψ :
∏

i

Gi → H that

continues ϕi for all i.
Proof. Denote H0 = 〈ϕi (Gi) , i ∈ I〉R ≤ H. Let us perform the linear ordering of the

set of indices I and prove that any element h ∈ H0 is representable in the form

gi1gi2 . . . gis, where gik∈ϕik(Gik), i1 < i2 < · · · < ij (3.3)

By virtue of condition (2) it is obvious that elements of form (3.2) make a subgroup. Since
∀α ∈ R by axiom (1.4) the element

(gi1gi2 . . . gis)
α = gi1

αgi2
α . . . gis

α

elements of form (3.3) make an R -subgroup. Now the required R -homomorphism can be
constructed as follows. Let an element g ∈

∏
i

Gi, be written in the form

g = (. . . , gi1gi2 . . . gis , . . . )
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where instead of the points there are units. Assume that

ψ(g) = gi1gi2 . . . gis .

That ψ is a homomorphism can be verified in a straightforward manner.
Let us return to the proof of the theorem. For this, between the groups GS and

∏
i

GS
i

we construct a pair of counter R -homomorphisms. Let

λi : Gi → GS
i

be a canonical R -homomorphism given by the definition of tensor completion. By Lemma
3.1 there exists an R -homomorphism

ϕ : G→
∏

i

GS
i .

Then it is obvious that [λi (Gi) , λj (Gj)] = e , if i 6= j. By the definition of tensor completion
there exists a S-homomorphism ψ1 that makes the diagram

commutative.
Let us verify that

[λi (Gi) , λj (Gj)] = e.

This is so because the generatrices of the first subgroup commute with the generatrices of
the second subgroup. By virtue of the definition of tensor completion there exists a S-
homomorphism βi, that makes the diagram

commutative. Now by virtue of Lemma 3.1 there exists a S-homomorphism ψ2 :
∏

i

GS
i → GS .

That these are counter-homomorphisms can be verified in a straightforward manner.
Theorem 3.2. The operation of tensor completion is permutable with direct limits.
Proof. Let us construct in a standard manner the counter-mappings between the group

GS
∗ and the group

H = lim−→GS
i .

Denote
ϕi : GS

i → H

G =
∏
i

Gi GS

∏
i

GS
i

λ

∃ψ1

G =
∏
i

Gi ⟨λ(Gi)⟩S

GS
i

λ

βi

(i ∈ I)
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Then there exists a S-homomorphism

ψ1 : H → GS
∗

that makes the diagram

commutative. Here πi : Gi → G∗ is the projection, πS
i : GS

i → GS
∗ is the corresponding

homomorphism of tensor completions. Using the universal property of tensor completion, for
every index i we construct the mapping (ψ2)i, that makes the diagram

commutative. Since the subgroups πi(Gi) cover the group G∗ and since the homomorphisms
(ψ2)iand (ψ2)jare consistent on the common elements, the R-homomorphism ψ2 : G∗ → His
well-defined. The S-homomorphism will be the sought counter homomorphism for ψ1.

Remark 1. The permutability of tensor completion with direct limits allows one to
reduce many problems on completion to the case of a finitely generated group. In fact, let
{Gi, (i ∈ I) , πj

i } be the direct limit of all finitely generated subgroups of the group G. Then
G = lim−→Gi and GS ∼= lim−→Gi

S .
Remark 2. Let us give an example showing that the Cartesian product operation is not

permutable with the operation of tensor completion. Denote

λ : ΠiGi → ΠGS
i .

Then by virtue of the universal property of tensor completions we have the S-homomorphism

λS :
(
ΠiGi

)S → ΠGS
i

which in the general case is not an isomorphism. An analogous example already exists in the
theory of abelian groups.

Let us take as a ring R the field of rational numbers Q, while as Gn, n ∈ N, we take a
cyclic group of order n. Let Gn = 〈an〉, n ∈ N. Then

GQ
n = Gn ⊗Q = 0.

Therefore
(ΠGn)Q = 0.

At the same time the group ΠnGn, contains elements of infinite order and therefore the group

(ΠGn)Q = ΠGn ⊗Q

is nonzero.

GS
i GS

∗

H

πS
i

ψi
(ψ2)i

i GS
∗

H

πS
i

∃ψ1

GS
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Let G∗ be a limit group of the inverse spectrum

G = {Gi, (i ∈ I) , πj
i }.

We construct the S-homomorphism

σ(G∗)S → lim←−G
S
i .

For this we denote by
πi : G∗ −→ Gi

the projection of the limit group onto the i -th component. Then

πS
i : (G∗)S → GS

i

is the corresponding homomorphism of tensor completions. Let

µi : lim←−G
S
i → GS

i

be the natural projection. Then there exists a homomorphism

σ(G∗)S → lim←−G
S
i ,

that makes the diagram

commutative.
We will illustrate by an example that in the general case this homomorphism is not an
isomorphism. Let us consider Gk, k ∈ N, Gk = 〈ak〉, where ak is an element of order pk, p
is a prime number. Then, as is known, lim←−Gk

∼= Zp∞ is an additive group of integer p-adic
numbers,

ZQ
p∞ = Zp∞ ⊗Q

is the vector space over Q of continual cardinality. Simultaneously,

lim←−Gk
Q = lim←− (Gk ⊗Q) = lim←− 0 = 0.
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S
i
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i
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