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REPRESENTATION FORMULAS OF SOLUTION FOR A PERTURBED
CONTROLLED FUNCTIONAL-DIFFERENTIAL EQUATION CONSIDERING

VARIATION OF THE INITIAL MOMENT AND CONTINUITY OF THE INITIAL
CONDITION
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Abstract. The analytic representation formulas of solution are proved for the nonlinear
perturbed controlled functional-differential equation with a delay parameter. In formulas the
effects of the continuous initial condition and variation of the initial moment are revealed. The
representation formula of solution plays an important role in the investigation of optimization
problems, allows one to get an approximate solution of the perturbed equation and to carry
out a sensitivity analysis of mathematical models.

Keywords and phrases: Controlled functional-differential equation, represent-ation for-
mula of solution, continuous initial condition, perturbations.

AMS subject classification (2020): 4K27, 34K07.

1. Introduction

In the present paper is found an analytic relation (representation formula) between solu-
tion of the original Cauchy problem

ẋ(t) = f(t, x(t), x(t− τ0), u0(t), u0(t− θ)), t ∈ [t00, t1], (1.1)

x(t) = ϕ0(t), t ≤ t00

and solution of corresponding perturbed (with respect to initial moment t00, delay τ0, initial
function ϕ0(t) and control function u0(t)) problem are found. Continuity at the initial mo-
ment means that at the initial moment values of the initial function and trajectory always
coincide. The representation formula of solution plays an important role in the investigation
of optimization problems [1-8] and in carring out a sensitivity analysis of mathematical Mod-
els [9-11]. Finally, we note that the case when equation (1.1) does not contain u0(t− θ) and
the initial moment is fixed the representation formulas of solution are proved in [12, 13].

2. Formulation of main results

Let Rn be the n-dimensional vector space of points x = (x1, ..., xn)T and let O ⊂ Rn, U ⊂
Rr be convex, open and bounded sets; let t1 > t02 > t01, τ2 > τ1 > 0 and let θ > 0 be
given numbers, with t02 + τ2 < t1. Suppose that the n-dimensional function f(t, x, y, u, v) is
continuous on the set I × O2 × U2, where I = [t01, t1] and continuously differentiable with
respect to x, y, u, v. It is clear that, for the compact sets K0 ⊂ O and U0 ⊂ U there exists a
number M0 = M0(K0, U0) > 0 such that

|f(t, x, y, u, v)|+ |fx(·)|+ |fy(·)|+ |fu(·)|+ |fv(·)| ≤ M0, (2.1)

∀(t, x, y, u, v) ∈ I ×K2
0 × U2

0 .
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Further, denote by Φ and Ω the sets of continuous differentiable functions ϕ(t) ∈ O, t ∈ [τ̂ , t02],
where τ̂ = t01 − max{τ2, θ} and piecewise continuous functions u(t) ∈ U, t ∈ I1 = [τ̂ , t1],
respectively, with the set clu(I1) ⊂ U .

To each element

w = (t0, τ, ϕ(t), u(t)) ∈ W = (t01, t02)× (τ1, τ2)× Φ× Ω

we assign the controlled functional-differential equation

ẋ(t) = f(t, x(t), x(t− τ), u(t), u(t− θ)), t ∈ [t0, t1] (2.2)

with the continuous initial condition

x(t) = ϕ(t), t ∈ [τ̂ , t0]. (2.3)

Definition 2.1. Let w ∈ W, a function x(t) = x(t;w) ∈ O, t ∈ I1 is called a solution
of equation (2.2) with the condition (2.3) or a solution corresponding to the element w and
defined on the interval I1 if x(t) satisfies condition (2.3) and is absolutely continuous on the
interval [t0, t1] and satisfies equation (2.2) almost everywhere (a. e.) on [t0, t1].

Let us introduce the notations:

|w| = |t0|+ |τ |+ ‖ϕ‖1 + ‖u‖, Wε(w0) =
{

w ∈ W : |w − w0| ≤ ε
}

,

where

‖ϕ‖1 = sup
{
|ϕ(t)|+ |ϕ̇(t)| : t ∈ [τ̂ , t02]

}
, ‖u‖ = sup

{
|u(t)| : t ∈ I1

}
,

ε > 0 is a fixed number and w0 = (t00, τ0, ϕ0(t), u0(t)) ∈ W is a fixed element; furthermore,

δt0 = t0 − t00, δτ = τ − τ0, δϕ(t) = ϕ(t)− ϕ0(t), δu(t) = u(t)− u0(t),

δw = w − w0 = (δt0, δτ, δϕ(t), δu(t)), |δw| = |δt0|+ |δτ |+ ‖δϕ‖1 + ‖δu‖.

Let x0(t) = x(t;w0) be a solution corresponding to the element w0 = (t00, τ0,
ϕ0(t), u0(t)) ∈ W and defined on the interval I1. Then there exists a number ε1 > 0 such
that to each element w = w0 + δw ∈ Wε1(w0) corresponds the solution x(t;w0 + δw) defined
on the interval I1 (see Theorem 3.1, in Section 3).

Theorem 2.1. Let x0(t) = x(t;w0) be a solution corresponding to the element w0 =
(t00, τ0, ϕ0(t), u0(t)) ∈ W and defined on the interval I1. Then there exists a number ε2 ∈
(0, ε1) such that, for arbitrary

δw ∈ δW−
ε2

=
{

δw ∈ W − w0 : |δw| ≤ ε2, δt0 ≤ 0
}

on the interval [t00, t1] the following representation holds:

x(t;w0 + δw) = x0(t) + δx(t; δw) + o(t; δw), (2.4)
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where

δx(t; δw) = Y (t00; t)
(
ϕ̇0(t00)− f−0

)
δt0 + β(t; δw) (2.5)

and

β(t; δw) = Y (t00; t)δϕ(t00) +
∫ t00

t00−τ0

Y (s + τ0; t)fy[s + τ0]δϕ(s)ds

−
{∫ t

t00

Y (s; t)fy[s]ẋ0(s− τ0)ds
}

δτ

+
∫ t

t00

Y (s; t)
[
fu[s]δu(s) + fv[s]δu(s− θ)

]
ds. (2.6)

Here

lim
|δw|→0

o(t; δw)
|δw|

= 0 uniformly for t ∈ [t00, t1];

f−0 = f(t00, ϕ0(t00), ϕ0(t00 − τ0), u0(t00−), u0(t00 − θ−)), (2.7)

fu[s] =
∂

∂u
f(s, x0(s), x0(s− τ0), u0(s), u0(s− θ));

Y (s; t) is the n× n matrix function satisfying the equation

Ys(s; t) = −Y (s; t)fx[s]− Y (s + τ0; t)fy[s + τ0], s ∈ [t00, t], t ∈ (t00, t1] (2.8)

and the conditions

Y (t; t) = E; Y (s; t) = Θ, s > t; (2.9)

E is the identity matrix and Θ is the zero matrix.

Theorem 2.1 corresponds to the case when the variation at the initial moment t00 occurs
from the left.

Some comments. The function δx(t; δw) is called the first variation of the solution
x0(t) on the interval [t00, t1]. The expression (2.5) is called the variation formula of solution.
The term “variation formula of solution” has been introduced by Revaz Gamkrelidze and
proved for the ordinary differential equation in [1].

The expression

Y (t00; t)
(
ϕ̇0(t00)− f−0

)
δt0

in formula (2.5) is the effect of perturbation of the moment t00 and the continuous initial
condition.

The addend
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Y (t00; t)δϕ(t00) +
∫ t00

t00−τ0

Y (s + τ0; t)fy[s + τ0]δϕ(s)ds

in formula (2.6) is the effect of perturbation of the initial function ϕ0(t).
The expression

−
{∫ t

t00

Y (s; t)fy[s]ẋ0(s− τ0)ds
}

δτ

in formula (2.6) is the effect of perturbation of the delay parameter τ0.
The addend ∫ t

t0

Y (s; t)
[
fu[s]δu(s) + fv[s]δu(s− θ)

]
ds

in formula (2.6) is the effect of perturbation of the control function u0(t).
On the basis of the Cauchy formula [6] we conclude that the function

δx(t) =


δϕ(t), t ∈ [τ̂ , t00),
(ϕ̇0(t00)− f−0 )δt0 + δϕ(t00), t = t00,

δx(t; δw), t ∈ [t00, t1]

satisfies the linear functional-differential equation

δ̇x(t) = fx[t]δx(t) + fy[t]δx(t− τ0)− fy[t]ẋ0(t− τ0)δτ

+fu[t]δu(t) + fv[t]δu(t− θ), t ∈ (t00, t1] (2.10)

with the initial condition

δx(t) = δϕ(t), t ∈ [τ̂ , t00), δx(t00) = (ϕ̇0(t00)− f−0 )δt0 + δϕ(t00). (2.11)

Formula (2.4) allows us to construct on the interval [t00, t1] an approximate solution of the
perturbed equation

ẋ(t) = f(t, x(t), x(t− τ0 − δτ), u0(t) + δu(t), u0(t− θ) + δu(t− θ)) (2.12)

with the initial condition

x(t) = ϕ0(t) + δϕ(t), t ∈ [τ̂ , t00 + δt0], (2.13)

where δt0 < 0.
In fact, for a small |δw| from (2.4) for solution x(t;w0 + δw) of the perturbed problem

(2.12)-(2.13) we have

x(t;w0 + δw) ≈ x0(t) + δx(t; δw), t ∈ [t00, t1].
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Thus, x0(t) + δx(t; δw) can be considered as approximate solution on the interval [t00, t1].
It is clear that, the first variation δx(t; δw) can be calculated in two ways: first -by finding
the solution Y (s; t) of problem (2.8)-(2.9); the other- by finding the solution of the problem
(2.10)-(2.11).

Theorem 2.2. Let x0(t) = x(t;w0) be a solution corresponding to the element w0 =
(t00, τ0, ϕ0(t), u0(t)) ∈ W and defined on the interval I1. Then for each fixed t̂0 ∈ (t00, t00+δ),
where δ > 0 and t00 + δ < t02 there exists a number ε2 ∈ (0, ε1) such that, for arbitrary

δw ∈ δW+
ε2

=
{

δw ∈ W − w0 : |δw| ≤ ε2, δt0 > 0
}

on the interval [t̂0, t1] the representation (2.4) holds, where

δx(t; δw) = Y (t00; t)
(
ϕ̇0(t00)− f+

0

)
δt0 + β(t; δw). (2.14)

Theorem 2.2 corresponds to the case when the variation at the point t00 occurs from the
right.

Theorem 2.3. Let x0(t) = x(t;w0) be a solution corresponding to the element w0 =
(t00, τ0, ϕ0(t), u0(t)) ∈ W and defined on the interval I1. Moreover, let

f+
0 = f−0 := f0.

Then for each fixed t̂0 ∈ (t00, t00 + δ), where δ > 0 and t00 + δ < t02 there exists a number
ε2 ∈ (0, ε1) such that, for arbitrary

δw ∈ δWε2 =
{

δw ∈ W − w0 : |δw| ≤ ε2

}
on the interval [t̂0, t1] the representation (2.4) holds, where

δx(t; δw) = Y (t00; t)
(
ϕ̇0(t00)− f0

)
δt0 + β(t; δw).

Theorem 2.3 corresponds to the case when the variation at point t00 occurs from both
sides and is a corollary to Theorems 2.1 and 2.2.

3. Auxiliary assertions

Theorem 3.1 ([6], p. 18]). Let x0(t) = x(t;w0) be a solution corresponding to the
element w0 = (t00, τ0, ϕ0(t), u0(t)) ∈ W and defined on the interval I1 = [τ̂ , t1]. Then there
exists a number ε1 > 0 such that to each element w = w0 + δw ∈ Wε1(w0) corresponds
solution x(t) = x(t;w0 +δw) defined on the interval I1 with x(t) ∈ K1 and u0(t)+δu(t) ∈ U1,
where K1 ⊂ O is a compact set containing a neighborhood of the set x0(I1) and U1 ⊂ U is a
compact set containing a neighborhood of the set clu0(I1).

Theorem 3.1 allows one to introduce the increment of the solution x0(t) on the interval
I1

∆x(t) = ∆x(t; δw) = x(t;w0 + δw)− x0(t),

t ∈ I1, δw = w − w0 ∈ δW−
ε1

.
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Theorem 3.2. There exists a number ε2 ∈ (0, ε1) such that

max
t∈I1

|∆x(t)| ≤ O(δw) (3.1)

for arbitrary δw ∈ δW−
ε2

. Moreover,

∆x(t00) = δϕ(t00) +
(
ϕ̇0(t00)− f−0

)
δt0 + o(δw). (3.2)

Here

lim
|δw|→0

O(δw)
|δw|

< ∞.

Proof. Let ε2 ∈ (0, ε1) be insomuch small that for arbitrary δw ∈ δW−
ε2

the following
inequality

t00 − τ < t0, t00 − τ0 < t0 (3.3)

holds, where τ = τ0 + δτ and t0 = t00 + δt0. On the interval [t00, t1] the function ∆x(t) =
x(t)− x0(t), where x(t) = x(t;w0 + δw), satisfies the equation

∆̇x(t) = a(t; δw), (3.4)

where

a(t; δw) = f(t, x(t), x(t− τ), u(t), u(t− θ))− f(t, x0(t), x0(t− τ0), u0(t), u0(t− θ)),

u(t) = u0(t) + δu(t).

We rewrite the equation (3.4) in the integral form

∆x(t) = ∆x(t00) +
∫ t

t00

a(s; δw)ds, t ∈ [t00, t1].

Hence it follows that

|∆x(t)| ≤ |∆x(t00)|+ a1(t; t00, δw), (3.5)

where

a1(t; t00, δw) =
∫ t

t00

|a(s; δw)|ds.

Let us prove the formula (3.2). We have

∆x(t00) = x(t00)− x0(t00) = ϕ0(t0) + δϕ(t0)

+
∫ t00

t0

f(t, x(t), ϕ(t− τ), u(t), u(t− θ))dt− ϕ0(t00) (3.6)
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(see (3.3)). It is clear that

ϕ0(t0)− ϕ0(t00) =
∫ t0

t00

ϕ̇0(t)dt = ϕ̇0(t00)δt0 + α(δw),

where

α(δw) =
∫ t00

t0

(
ϕ̇0(t)− ϕ̇0(t00)

)
dt

and

δϕ(t0) = δϕ(t00) + δϕ(t0)− δϕ(t00) = δϕ(t00) + β(δw),

where

β(δw) =
∫ t00

t0

δ̇ϕ(t)dt.

It is easy to see that

|α(δw)| ≤ |δw| max
t∈[t0,t00]

|ϕ̇0(t)− ϕ̇0(t00)| = o(δw)

and

|β(δw)| ≤ |δw|2 = o(δw).

Thus,

ϕ0(t0) + δϕ(t0)− ϕ0(t00) = ϕ̇(t00)δt0 + δϕ(t00) + o(δw). (3.7)

Furthermore, ∫ t00

t0

f(t, x(t), ϕ(t− τ), u(t), u(t− θ))dt = γ1(δw) + γ2(δw),

where

γ1(δw) =
∫ t00

t0

f(t, ϕ0(t), ϕ0(t− τ0), u0(t), u0(t− θ))dt,

and

γ2(δw) =
∫ t00

t0

[
f(t, x(t), ϕ(t− τ), u(t), u(t− θ))

−f(t, ϕ0(t), ϕ0(t− τ0), u0(t), u0(t− θ))
]
dt.

On the basis of (2.1) it is proved that for the compact sets K1 ⊂ O and U1 ⊂ U there exist
a number L > 0 such that
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|f(t, x1, y1, u1, v1)− f(t, x2, y2, u2, v2)| ≤ L
(
|x1 − x2|+ |y1 − y2|+ |u1 − u2|

+|v1 − v2|
)
,∀t ∈ [t01, t1],∀(x1, x2, y1, y2) ∈ K4

1 ,∀(u1, u2, v1, v2) ∈ U4
1

(see [6], p. 29).
Let us now transform γ1(δw) and γ2(δw). We have

γ1(δw) =
∫ t00

t0

f(t, ϕ0(t00), ϕ0(t00 − τ0), u0(t00−), u0(t00 − θ−))dt

+
∫ t00

t0

[
f(t, ϕ(t), ϕ(t− τ), u(t), u(t− θ))

−f(t, ϕ0(t00), ϕ0(t00 − τ0), u0(t00−), u0(t00 − θ−))
]
dt

= −f−0 δt0 + γ11(δw)

(see (2.7)). Next,

|γ11(δw)| ≤ L

∫ t00

t0

[
|ϕ(t)− ϕ0(t00)|+ |ϕ(t− τ)− ϕ0(t00 − τ0)|

+|u(t)− u0(t00−)|+ |u(t− θ)− u0(t00 − θ−)|
]
dt ≤ L|δw|γ12(δw),

where

γ12(δw) = sup
t∈[t0,t00]

[
|ϕ(t)− ϕ0(t00)|+ |ϕ(t− τ)− ϕ0(t00 − τ0)|

+|u(t)− u0(t00−)|+ |u(t− θ)− u0(t00 − θ−)|
]
.

It is clear that

γ12(δw) → 0 for |δw| → 0,

i. e.,

γ11(δw) = o(δw).

Thus,

γ1(δw) = −f−0 δt0 + o(δw). (3.8)

It is easy to see that

|γ2(δw)| ≤ L

∫ t00

t0

(
|x(t)− ϕ0(t)|+ |ϕ0(t− τ) + δϕ(t− τ)− ϕ0(t− τ0)|

+|δu(t)|+ |δu(t− θ)|
)
dt = L

∫ t00

t0

|x(t)− ϕ0(t)|dt + o(δw);
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For t ∈ [t0, t00] we have

|x(t)− ϕ0(t)| = |x(t0) +
∫ t

t0

f(s, x(s), x(s− τ), u(s), u(s− θ))ds− ϕ0(t)|

= |ϕ0(t0) + δϕ(t0) +
∫ t

t0

f(s, x(s), x(s− τ), u(s), u(s− θ))ds− ϕ0(t)|

≤
{
|δϕ(t0)|+

∫ t00

t0

|f(s, x(s), x(s− τ), u(s), u(s− θ))|ds

+
∫ t00

t0

|ϕ̇0(s)|ds
}
≤ O(δw) (3.9)

(see Theorem 3.1).
Consequently,

γ2(δw) = o(δw) (3.10).

From (3.6) by virtue of (3.7), (3.8) and (3.10) we obtain (3.2).
Let us now prove the inequality (3.1). We note that δw ∈ δW−

ε2
, i. e., t0 < t00, therefore

∆x(t) =

{
δϕ(t), t ∈ [τ̂ , t0),
x(t)− ϕ0(t), [t0, t00].

On the basis of (3.9) we have

max
t∈[τ̂ ,t00]

|∆x(t)| ≤ O(δw). (3.11)

We will estimate now a1(t; t00, δw), t ∈ [t00, t1]. We have

a1(t; t00, δw) ≤ L

∫ t

t00

[
|x(s)− x0(s)|+ |x(s− τ)− x0(s− τ0)|

+|δu(s)|+ |δu(s− θ)|
]
ds ≤ L

∫ t

t00

|∆x(s)|ds + La11(t; t00, δw) + 2L(t1 − t00)|δw|

≤ O(δw) + L

∫ t

t00

|∆x(s)|ds + La11(t; t00, δw),

where

a11(t; t00, δw) =
∫ t

t00

|x(s− τ)− x0(s− τ0)|ds.

We introduce the notations

s1 = min{t0 + τ, t0 + τ0}, s2 = max{t00 + τ, t00 + τ0}.

It is not difficult to see that
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s1 > t00 and |s2 − s1| = O(δw)

(see (3.3)). Next, if t ∈ [t00, s1] then t − τ ≤ t0 and t − τ0 ≤ t0 ≤ t00; if t ∈ [s2, t1] then
t− τ ≥ t00 and t− τ0 ≥ t00; there exist numbers M > 0 and N > 0 such that

|x(s− τ)− x0(s− τ0)| ≤ M, t ∈ [t00, t1]

and

|ẋ0(t)| ≤ N, a. e. on I1

(see Theorem 3.1, Definition 2.1 and (2.1)).
Let t ∈ [t00, s1] then

a11(t; t00, δw) ≤ a11(s1; t00, δw) =
∫ s1

t00

|ϕ(s− τ)− ϕ0(s− τ0)|ds

≤
∫ s1

t00

|δϕ(s− τ)|ds +
∫ s1

t00

|ϕ0(s− τ)− ϕ0(s− τ0)|ds ≤ (t1 − t00)|δw|

+
∫ s1

t00

∣∣∣ ∫ s−τ

s−τ0

|ϕ̇0(ξ)|dξ
∣∣∣ds ≤ (t1 − t00)|δw|+ (t1 − t00)‖ϕ0‖1|δw| = O(δw).

Let t ∈ [s1, s2] then

a11(t; t00, δw) = a11(s1; t00, δw) +
∫ t

s1

|x(s− τ)− x0(s− τ0)|ds

≤ O(δw) + M |s2 − s1| = O(δw).

Let t ∈ [s2, t1] then s2 − τ ≥ t00 and s2 − τ0 ≥ t00. We have

a11(t; t00, δw) = a11(s2; t00, δw) +
∫ t

s2

|x(s− τ)− x0(s− τ0)|ds

≤ O(δw) +
∫ t

s2

|x(s− τ)− x0(s− τ)|ds +
∫ t

s2

|x0(s− τ)− x0(s− τ0)|ds

= O(δw) +
∫ t

s2

|∆x(s− τ)|ds +
∫ t

s2

∣∣∣ ∫ s−τ

s−τ0

|ẋ0(ξ)|dξ
∣∣∣ds

≤ O(δw) +
∫ t−τ

s2−τ

|∆x(s)|ds + (t− s2)N |δτ |

≤ O(δw) +
∫ t

t00

|∆x(s)|ds + (t1 − t00)N |δw|

= O(δw) +
∫ t

t00

|∆x(s)|ds.

By using the last relations we obtain
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a11(t; t00, δw) ≤ O(δw) +
∫ t

t00

|∆x(s)|ds, t ∈ [t00, t1].

Consequently, we get

a1(t; t00, δw) ≤ O(δw) + 2
∫ t

t00

|∆x(s)|ds. (3.12)

From (3.5) according to (3.2) and (3.12) we have

|∆x(t)| ≤ O(δw) + 2
∫ t

t00

|∆x(s)|ds, t ∈ [t00, t1].

By the Gronwall-Bellman inequality we get

|∆x(t)| ≤ O(δw)e2L(t1−t00) = O(δw), t ∈ [t00, t1]. (3.13)

According to (3.11) and (3.13) we obtain (3.1).
Theorem 3.3. There exists a number ε2 ∈ (0, ε1) such that

max
t∈I1

|∆x(t)| ≤ O(δw)

for arbitrary δw ∈ δW+
ε2

. Moreover,

∆x(t00) = δϕ(t00) +
(
ϕ̇0(t00)− f+

0

)
δt0 + o(δw).

Theorem 3.3 is proved by analogy to Theorem 3.2 without principal changes.

4. Proof of Theorem 2.1

The function ∆x(t) satisfies the equation

∆̇x(t) = fx[t]∆x(t) + fy[t]∆x(t− τ0) + fu[t]δu(t) + fv[t]δu(t− θ)

+b(t; δw), t ∈ [t00, t1], (4.1)

where

b(t; δw) = a(t; δw)− fx[t]∆x(t)− fy[t]∆x(t− τ0)− fu[t]δu(t)

−fv[t]δu(t− θ). (4.2)

By using the Cauchy formula [6, p. 31], one can represent the solution of the equation (4.1)
in the form

∆x(t) = Y (t00; t)∆x(t00) +
∫ t

t00

Y (s; t)
(
fu[s]δu(s) + fv[s]δu(s− θ)

)
ds

+b1(t; t00, δw) + b2(t; t00, δw), (4.3)
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where

b1(t; t00, δw) =
∫ t00

t00−τ0

Y (s + τ0; t)fy[s + τ0]∆x(s)ds,

b2(t; t00, δw) =
∫ t

t00

Y (s; t)b(s; δw)ds

and Y (s; t) is the matrix function satisfying the equation (2.8) and the condition (2.9). The
function Y (ξ; t) is continuous on the set

Π =
{

(s, t) : s ∈ [t00, t], t ∈ [t00, t1]
}

(see [6], Lemma 2.6). Therefore,

Y (t00; t)∆x(t00) = Y (t00; t)
[
δϕ(t00) +

(
ϕ̇0(t00)− f−0

)
δt0

]
+ o(t; δw) (4.4)

(see (3.2)). One can readily see that

b1(t; t00, δw) =
∫ t0

t00−τ0

Y (s + τ0; t)fy[s + τ0]δϕ(s)ds +
∫ t00

t0

Y (s + τ0; t)fy[s + τ0]∆x(s)ds

=
∫ t00

t00−τ0

Y (s + τ0; t)fy[s + τ0]δϕ(s)ds−
∫ t00

t0

Y (s + τ0; t)fy[s + τ0]δϕ(s)ds

+
∫ t00

t0

Y (s + τ0; t)fy[s + τ0]∆x(s)ds =
∫ t00

t00−τ0

Y (s + τ0; t)fy[s + τ0]δϕ(s)ds

+o(t; δw) (4.5)

(see (3.1)). We introduce the notations:

f [t; s, δw] = f(t, x0(t) + s∆x(t), x0(t− τ0) + s(x0(t− τ)− x0(t− τ0)

+∆x(t− τ)), u0(t) + sδu(t), u0(t− θ) + sδu(t− θ))

σx(t; s, δw) = fx[t; s, δw]− fx[t].

It is easy to see that

a(t; δw) =
∫ 1

0

d

ds
f [t; s, δw]ds =

∫ 1

0

{
fx[t; s, δw]∆x(t)

+fy[t; s, δw](x0(t− τ)− x0(t− τ0) + ∆x(t− τ)) + fu[t; s, δw]δu(t)

+fv[t; s, δw]δu(t− θ)
}

ds =
[ ∫ 1

0
σx(t; s, δw)ds

]
∆x(t)

+
[ ∫ 1

0
σy(t; s, δw)ds

]
(x0(t− τ)− x0(t− τ0) + ∆x(t− τ))
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+
[ ∫ 1

0
σu(t; s, δw)ds

]
δu(t) +

[ ∫ 1

0
σv(t; s, δw)ds

]
δu(t− θ)

+fx[t]∆x(t) + fy[t](x0(t− τ)− x0(t− τ0) + ∆x(t− τ)) + fu[t]δu(t)

+fv[t]δu(t− θ).

Taking into account the last relation for t ∈ [t00, t1], we have

b2(t; t00, δw) = b21(t; δw) + b22(t; δw) + b23(t; δw) + b24(t; δw)

+b25(t; δw) + b26(t; δw),

where

b21(t; δw) =
∫ t

t00

Y (ξ; t)σx(ξ; δw)∆x(ξ)dξ, σx(ξ; δw) =
∫ 1

0
σx(ξ; s, δw)ds;

b22(t; δw) =
∫ t

t00

Y (ξ; t)σy(ξ; δw)(x0(ξ − τ)− x0(ξ − τ0) + ∆x(ξ − τ))dξ,

σy(ξ; δw) =
∫ 1

0
σy(ξ; s, δw)ds; b23(t; δw) =

∫ t

t00

Y (ξ; t)σu(ξ; δw)δu(ξ)dξ,

σu(ξ; δw) =
∫ 1

0
σu(ξ; s, δw)ds; b24(t; δw) =

∫ t

t00

Y (ξ; t)σv(ξ; δw)δu(ξ − θ)dξ,

σv(ξ; δw) =
∫ 1

0
σv(ξ; s, δw)ds; b25(t; δw) =

∫ t

t00

Y (ξ; t)fy[ξ][x0(ξ − τ)− x0(ξ − τ0)]dξ;

b26(t; δw) =
∫ t

t00

Y (ξ; t)fy[ξ][∆x(ξ − τ)−∆x(ξ − τ0)]dξ

(see 4.2). The function x0(t), t ∈ I1, is absolutely continuous. For each Lebesgue point
ξ ∈ (t00, t1] of the function ẋ0(ξ − τ0) we get

x0(ξ − τ)− x0(ξ − τ0) =
∫ ξ−δτ

ξ
ẋ0(ς − τ0)dς =

= −ẋ0(ξ − τ0)δτ + γ(ξ; δτ), (4.6)

and with

lim
|δτ |→0

∣∣∣γ(ξ; δτ)
δτ

∣∣∣ = 0.

We denote now γ(ξ; δτ) by γ(ξ; δw). It is clear that

lim
|δw|→0

|γ(ξ; δw|
|δw|

≤ lim
|δτ |→0

∣∣∣γ(ξ; δτ)
δτ

∣∣∣ = 0. (4.7)

Thus, (4.6) is valid for almost all points of the interval (t00, t1). From (4.6), taking into
account the boundedness of the function ẋ0(t), t ∈ I1 it follows that
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|x0(ξ − τ)− x0(ξ − τ0)| ≤ N |δτ | ≤ N |δw| = O(δw) (4.8)

and

|γ(ξ; δw|
|δw|

≤
∣∣∣γ(ξ; δτ)

δτ

∣∣∣ =
∣∣∣ẋ0(ξ − τ0) +

1
δτ

∫ ξ−δτ

ξ
ẋ0(ς − τ0)dς

∣∣∣ ≤ const. (4.9)

It is clear that for ξ ∈ [t00, s1]

|∆x(ξ − τ)−∆x(ξ − τ0)| = |δϕ(ξ − τ)− δϕ(ξ − τ0)|

≤
∣∣∣ ∫ ξ−τ

ξ−τ0

δ̇ϕ(ς)dς
∣∣∣ = o(δw) (4.10)

and for ξ ∈ [s1, s2] we have

|∆x(ξ − τ)−∆x(ξ − τ0)| ≤ O(δw) (4.11)

(see (3.1)).
Let ξ ∈ [s2, t1] then ξ − τ ≥ t00, ξ − τ0 ≥ t00. Therefor,

|∆x(ξ − τ)−∆x(ξ − τ0)| =
∣∣∣ ∫ ξ−τ0

ξ−τ
|∆̇(s)|ds

∣∣∣
≤

∣∣∣ ∫ ξ−τ0

ξ−τ
L

[
|∆x(s)|+ |x0(s− τ)− x0(s− τ0)|+ |δu(s)|

+|δu(s− θ)|
]
ds

∣∣∣ ≤ o(δw) (4.12)

( see (3.1),(4.8) ).
According to (3.1), (4.6) for expressions b2,i(t; δw), i = 1, 6 we obtain

|b21(t; δw)| ≤ ‖Y ‖O(δw)σx(δw), σx(δw) =
∫ t1

t00

|σx(ξ; δw)|dξ;

|b22(t; δw)| ≤ ‖Y ‖O(δw)σy(δw), σy(δw) =
∫ t1

t00

|σy(ξ; δw)|dξ;

|b23(t; δw)| ≤ ‖Y ‖O(δw)σu(δw), σu(δw) =
∫ t1

t00

|σu(ξ; δw)|dξ;

|b24(t; δw)| ≤ ‖Y ‖O(δw)σv(δw), σv(δw) =
∫ t1

t00

|σv(ξ; δw)|dξ;

b25(t; δw) = −
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + γ1(t; δw),

where

‖Y ‖ = sup{|Y (ξ; t)| : (ξ, t) ∈ Π}, γ1(t; δw) =
∫ t

t00

Y (ξ; t)fy[ξ]γ(ξ; δw)dξ

By the Lebesgue theorem on the passage to the limit under the integral sign, we have
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lim
δw→0

σx(δw) = 0, lim
δw→0

σy(δw) = 0, lim
δw→0

σu(δw) = 0, lim
δw→0

σv(δw) = 0

and

lim
δw→0

|γ(t; δw)|
|δw|

= 0,

uniformly for t ∈ [t00, t1], (see (4.7), (4.9)). Thus,

b2i(t; δw) = o(δw), i = 1, 4;

b25(t; δw) = −
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; δw).

Further,

|b26(t; δw)| ≤ ‖Y ‖
∫ t1

t00

|fy[ξ]||∆x(ξ − τ)−∆x(ξ − τ0)|dξ = o(δw)

(see (4.10)-(4.12)). Consequently,

b2(t; t00, δw) = −
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; δw) (4.13)

From (4.3) by virtue of (4.4), (4.5) and (4.13), we obtain (2.4), where δx(t; δw) has the form
(2.5).

5. Proof of Theorem 2.2

Let t̂0 ∈ (t00, t00+δ), where δ > 0 and t00+δ < t02. Moreover, let ε2 ∈ (0, ε1) be insomuch
small that t0 = t00 + δt0 < t̂0 for arbitrary

δw ∈ δW+
ε2

=
{

δw ∈ W − w0 : |δw| ≤ ε2, δt0 > 0
}

.

The function ∆x(t) satisfies the equation (4.1) on the interval [t0, t1]. Therefore, by using the
Cauchy formula, we can represent it in the form

∆x(t) = Y (t0; t)∆x(t0) +
∫ t

t0

Y (s; t)
(
fu[s]δu(s) + fv[s]δu(s− θ)

)
ds

+b1(t; t0, δw) + b2(t; t0, δw), (5.1)

where Y (ξ; t) is the matrix function satisfying the equation (2.8) and the condition (2.9).
The function Y (ξ; t) is continuous on the set [t00, t̂0)× [t̂0, t1], therefore

Y (t0; t)∆x(t0) = Y (t00; t)[δϕ(t00) + (ϕ̇(t00)− f+
0 )δt0] + o(t; δw) (5.2)

(see Theorem 3.3). It is not difficult to see that
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b1(t; t0, δw) =
∫ t00

t0−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ +
∫ t0

t00

Y (ξ + τ0; t)fy[ξ + τ0]∆x(ξ)dξ

=
∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ + o(t; δw)−
∫ t0−τ0

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

=
∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ + o(t; δ. (5.3)

In a similar way, with nonessential changes, for t ∈ [t̂0, t1], one can prove

b2(t; t0, δw) = −
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; δw) (5.4)

Taking into account (5.2)-(5.4), from (5.1) we obtain the formula (2.4) on the interval [t̂0, t1],
where δx(t; δw) has the form (2.14).
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