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TO THE APPLICATION OF THE MULTIPOINT METHOD

Tamaz Vashakmadze Giorgi Buzhghulashvili

Abstract. We report on the application of the multipoint method for numerical solution of
two-dimensional boundary value problems for some linear and nonlinear differential equations
of the elliptic type, using the continuous analogue of the alternating direction method. We also
give the results of numerical realizations and comparisons with the Tikhonov-Samarskii and
Volkov methods.
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Let us consider the boundary value problem for a linear strong-elliptic, self-adjoint
system of differential equation in a domain D with boundary ∂D

Lu =
(
kij∂ij − q

)
u (x1, x2) = −f (x1, x2) , (x1, x2) ∈ D, (1)

[u + σ (x1, x2) N(u)]∂D = ϕ (x1, x2) , (2)

where kij =
∥∥kij

αβ (x1, x2)
∥∥n

α,β=1
is a positive definite symmetrical matrix with constant

coefficients

N(u) = ‖Nα(u)δαβ‖n
1 , Nα(u) =

n∑
β=1

kij
αβuβ,i cos (ν, xj) ,

‖δαβ‖n
α,β=1 is an identity matrix, ν is an external normal, q = {q1 (x1, x2) , . . . , qn (x1, x2)}

is a diagonal nonnegative matrix, σ (x1, x2) > 0 is a scalar function, u = (u1, u2, . . . , un)T

is an unknown, f = (f1, f2, . . . , fn)T , and ϕ = (ϕ1, . . . , ϕn)T are known vector functions.
The continuous analogue of the alternating direction iteration scheme for the boundary
value problem (1) and (2), is defined by the following two series of expressions (see [1]):

B1u
s+1/2 = B12u

s + f = Fs+1/2, us+1/2 + σ1N
(
us+1/2

)∣∣
∂1D

= ϕ1,

B2u
s+1 = rIus+1/2 + (B2 − rI) us = Fs+1, us+1 + σ2N

(
us+1

)∣∣
∂2D

= ϕ2 (x1) ,
(3)

where r is an iterative parameter, I is an unit operator, σ = σ1 + σ2,

Bi =
∥∥∥(

r + q̂i
)
I + δαβÂi

∥∥∥n

α,β=1
, B12 = B1 + L, q1 + q2 = q,

q̂i ≥ qi
α (x1, x2) , Âi = −ai∂ii, ai > 0.

The following theorem of convergence of the iterative process (3) is true.
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Theorem 1. Let the following conditions be fulfilled:

i) Domain D is a square, 0 ≤ x1, x2 ≤ 1, Ai = −∂ii, B = BL,

ii) bB ≤ −L < 1
r
B1B2, (b > 0, 0 < r ≤ 1), B = (A1 + A2) ‖δαβ‖n

1 ,

iii) u0
α ∈ C4(0, 1; 0, 1) (α = 1, n).

Then the sequence of vector functions us converges to the solution u(x, y).

Below we consider some particular cases of this theorem when N(u) = 0.

Corollary 1. In the case of differential equations of the plane theory of elasticity, the
condition ii) is holds if we suppose that

b = µ, B = (A1 + A2) ‖δαβ‖2
1 , Bi = (rI + (2λ + 3µ)Ai) , r ∈ (0, 1).

Corollary 2. In the case when L is the operator of Vekua’s shell theory [1968], ii) is
true, when (compare with subsection 12.1, see (12.9))

b = min

{
1− ε,

(1− η)h2

2

}
, B = (A1 + A2) ‖δαβ‖5

1 ,

Bα = Bα ((r + 2µ)I + (2λ∗ + 3µ) Aα) , r ∈ (0, 1),

where 0 < η < 1, (1 + 2h2η)
−1

< ε < 1, and 2h is the thickness of the shell.

Let us consider the following differential equations

Lu = ∂1 (k1∂1u) + ∂2 (k2∂2u)− qu = f, k1, k2 > 0, q ≥ 0.

Instead of the iterative process (3) the following scheme can be used:

((r + q1) I + A1) us+1/2 = (rI − A2) us + f = Fs+1/2,

[
us+1/2 + σ1

∂us+1/2

∂ν

]
∂1D

= ϕ1,

((r + q2) I + A2) us+1 = (rI − A1) us+1/2 + f = Fs+1,

[
us+1 + σ2

∂us+1

∂ν

]
∂2D

= ϕ2,

(4)

where Aα = −∂α (kα∂α).

Let L = ∂αα, Aα = −∂αα. In this case, if the scheme (4) is applied, the following
theorem is true.

Theorem 2. Let the following conditions be fulfilled:

i) ‖A2u‖ < +∞,

ii) 0 < r < π2.

Then, for ∀ε > 0 ∃S(ε) such that when s > S(ε) ‖u− us‖ < ε.
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We remark that the alternating directions scheme (4), when (L = ∆), after the sub-
stitution

A = {I + τA1, I + τA2} , B = {A1 + A2, A1 + A2} , u =
(
us, us+1/2

)T
,

uτ =
(
τ−1

(
us+1/2 − us

)
, τ−1

(
us+1 − us−1/2

))T
, ϕ =

(
Fs+1/2, Fs+1

)T
, τ =

1

r
,

has been reduced to the canonical form of Samarski [2] for the operator equations Auτ =
Bu + ϕ in two-layer iteration processes, where the operators A and B are energetically
equivalent. In the above theorem, this condition is not fulfilled.

Let us consider the problem of approximately solving BVP (1) and (2) using the
iteration process (3) and (4). Correspondingly, a one dimensional BVP will be solved
using the methods of Tikhonov, Samarskii [3], Volkov [4], or generalized factorization (see
[5]) (GF) methods. We note that even though [3] is of an arbitrary order of accuracy,
difficulties may arise from the coefficients on which [3] scheme is dependent, due to the
necessity of computing recurrent integrals of the Volterra type. Volkov’s approach is
based on differentiating the given ODE to obtain the corresponding solution, however this
process may be divergent. Thus, using the (GF) method, the aforementioned processes
define the alternating direction method of an arbitrary order of accuracy.

Below, we provide numerical results obtained by solving PDEs using the alternating
direction method (ADM) corresponding to the iteration schemes (4). The results are
given in the corresponding tables. The tables below show the maximum absolute error
between the function and its approximation at the n-th iteration, where s = 3 is the
parameter of (P ) and (Q) building blocks of the (GF) method.

For the linear case,

(∂1 (k1∂1) + ∂2 (k2∂2)− q) u = −f (x1, x2) , Γ = I × I, I = (0, 1),

∂1 (k1∂1) us+1 = −Fs+1/2 + (q1 + r) us+1/2, ∂2 (k2∂2) us+1 = −Fs+1 + (q2 + r) us+1,

k1 = 1 + x2y2, k2 = 1 + x5y5, q1 = q2 = x4y3, u = x6 + y5 + x5y7,

h = 1/50, r = 10, s = 3, u0 = 0, ∂1 (k1∂1) u0 = 0, ∂2 (k2∂2) u0 = 0.

n δus+1/2 δus+1

700 0.00011357157392666295 0.00011303945386575975

1000 3.125228458644713e-5 3.003011986635329 e-5

2000 1.108921056314216 e-6 1.3168026149479317 e-6

3000 1.0756186812344026 e-6 1.0858063368424098 e–6

Table 1: Max absolute errors for the linear case of (ADM)
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For the nonlinear case,

uxx + uyy − u (ux + uy) = f (x1, x2) , Γ = I × I, I = (0, 1),

(−r1 − r2∂x + ∂xx) us+1/2 = − (r1 + r2∂x) u[s] + f + u[s]u[s]
x + u[s]u[s]

y = Fs+1/2,

(−r3 − r4∂y + ∂yy) us+1 = −r3u
[s+1/2] − r4u

[s]
y + f + u[s+1/2]u[s+1/2]

x + u[s+1/2]u[s]
y = Fs+1,

u0 = 0, u0
x = 0, u0

y = 0, ∂11u
0 = 0, ∂22u

0 = 0, u = x4 + y4 + x2y2

r1 = 6, r2 = 0.3, r3 = 6, r4 = 0.3, h = 1/90, k = 15, s = 3

n δus+1/2 δus+1

50 0.04175659811124133 0.03578427496565073

200 0.014437167228944503 0.012164445108532096

400 0.00836032923218566 0.007038268105019618

800 0.004736168566869647 0.004044056365913651

Table 2: Max absolute errors for the nonlinear case containing divergence (ADM)

One-dimensional problems were solved using the (GF) method in the linear case, while
additional iterations were applied to obtain results in the nonlinear case.
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