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ON THE APPLICATION OF COMPLEX ANALYSIS FOR THE ESSENTIALLY
NONLINEAR SYSTEM OF DIFFERENTIAL EQUATIONS

Tamaz Vashakmadze

Abstract. If we consider the mathematical models, corresponding to refined theories for elastic
plates, the main part of relevant differential operator contains together with Laplacian and
biharmonic operator also a composition of Laplacian on Monge-Ampére nonlinear form of second
degree and Poisson brackets. By using complex analysis, we construct a system of integro-
differential equations the solution of which we find by Seidel method of successive approximation.
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To demonstrate development of methods of complex analysis, for essentially non-linear
systems of partial DEs, it is sufficient to consider the following non-linear systems of PDEs
(see [1, Ch. 1]) for an isotropic elastic plate with constant thickness
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Systems (1)–(3) without the remainder terms R yield 2D systems of refined theories with
control parameters γ. By choosing the concrete value of γ we can get any of the existing
refined theories, while for other values of γ these mathematical models are new. Here E is
Young’s modulus of elasticity and ν is Poisson’s ratio, λ and µ are the Lamé coefficients.
For unity, together with above system consider (see [2])
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where λ∗ = 2λµ(λ + 2µ)−1, λ1 = λ
2h(λ+2µ)

and the functions τ = ε̄αα and ω = ū1,2 − ū2,1

correspond to plane expansion and rotation. By (4), the second equation with respect to
Airy’s function in the von Kármán system takes the form
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Here we note that in the right hand side of equation (6) we have well-known Poisson
brackets
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in the case of f = u3, g = (∂22 − ∂11)u3, p1 = x1, q1 = x2, i = j = N = 1.
The calculation and analysis of the symbolic determinant of systems of type (1)–(3)

show that the characteristic forms of such systems may be positive, negative or zero
because they represent arbitrary functions of x, y. Consider the expression

z = x1 + ix2, z̄ = x1 − ix2, u(x, y) = U(z, z̄), ∂1 = ∂/∂x1, ∂2 = ∂/∂x2,
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Now we can formulate the iterative-direct method by means of which solutions of the
DEs (3), (4) can be found if they are rewritten in complex variables.

Let L[U(z̄, z)][m] denote the m-th iteration for the deflection u∗3(x, y), which is cal-
culated by the known right-hand terms (without R) and the (m − 1)-th iteration of the
summand
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We do analogous operations for the shearing forces in DEs (3) as well as for system (4).
Let
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Thus, by applying complex analysis, we have reduced the systems of PDEs of KMR type
to the pseudointegral operator of second type.

The iterative scheme described by (7) corresponds to the solution of a Volterra sec-
ond type non-linear integral equation, whereas the processes described by the schemes
generated from (1) contain both Volterra and Fredholm type operators with an arbitrary
parameter γ. The convergence of a Volterra type process (where γ = −0.5) depends also
on a proper selection of the initial functions U [0] and V [0]. We can apply some results of
[4, XXIV, p. 476, Example 4] to the equation [u, u] + a2 = 0 for an arbitrary function
a = a(x, y). When γ 6= −0.5, the convergence depends also on the Fredholm type operator
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with an arbitrary parameter denoted by λ. The operator λ−1F (U, V ) depends on the
behavior of expressions which may generate different kinds of wave (shock, soliton) func-
tions, and if they are uniformly bounded functions, then the processes corresponding to
applications of the above Fredholm type operator will be convergent since the correspond-
ing operator will be the contracted one. Consider the following differential equation of
complex variable functions
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Using this approach, we complete [3, p. 15, Theorem 8]. The following statement is true.

Theorem 1. If we consider the following Seidel iterative schemes corresponding to bend-
ing and expansion-compression (1)–(3) and (9) processes, given by the following expres-
sions
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schemes are convergent in an open domain, when |z̄|, |z| < 1.

Proof. For different powers of z̄ and z we compute
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for Poisson brackets we get
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As powers of z̄ and z grow on each iteration with a factor no less than about two, it is
easy to show that U

[m]
3 , Ψ[m], and V [m] are fundamental sequences of functions and this

gives us convergence, because z̄rzs are basis of space of complex functions.

Remark 1. For the summands from system (1)–(4) containing (∆σ33, 1), we must use
the Euler–Maclaurin quadrature formula. Closeness with the classical theory can be
demonstrated by considering the Pompeiu formula [5, (4.11) or (4.13); I, 4], then we
immediately obtain an explicit solution of the Cauchy–Riemann inhomogeneous system
of DEs.
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