Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 38, 2024

SOLUTION OF THE CAUCHY PROBLEM IN QUADRATURES FOR ONE CLASS OF STRICTLY HYPERBOLIC EQUATIONS OF HIGH ORDER

Irine Sigua Mariam Vardanashvili

Abstract. The paper proposes an approach that allows one in a constructive way to effectively write out the solution to the Cauchy problem in quadratures for one class of strictly hyperbolic equations of high order.

Keywords and phrases: Higher order hyperbolic equations, general solution, Cauchy problem.

AMS subject classification (2010): 35G05, 35L25.

Consider the strictly hyperbolic equation on the following form [1]:

$$Lu := \frac{\partial^n u}{\partial t^n} + a_{n-1} \frac{\partial^n u}{\partial t^{n-1} \partial x} + a_{n-2} \frac{\partial^n u}{\partial t^{n-2} \partial x^2} + \dots + a_1 \frac{\partial^n u}{\partial t \partial x^{n-1}} + a_0 \frac{\partial^n u}{\partial x^n} = 0, \quad (1)$$

where u = u(x, t) is an unknown function of two variables x and t, a_i , i = 0, ..., n-1, are given constant coefficients, $n \ge 2$. In this case, due to the strictly hyperbolicy of equation (1), the corresponding characteristic equation

$$P(\lambda) = \lambda^{n} + a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \dots + a_{1}\lambda + a_{0} = 0$$

has only simple real roots $\lambda_1, \ldots, \lambda_n$. This in turn implies that

$$P(\lambda) = \prod_{i=1}^{n} (\lambda - \lambda_i)$$

and in accordance with this, equation (1) can be rewritten in the following form

$$Lu := \prod_{i=1}^{n} \left(\frac{\partial}{\partial t} - \lambda_i \frac{\partial}{\partial x} \right) u = 0.$$
(2)

As is known, the general solution to equation (2) is given by the following formula [2]:

$$u(x,t) = \sum_{i=1}^{n} \tau_i(x+\lambda_i t), \qquad (3)$$

where $\tau_i = \tau_i(s), s \in \mathbb{R}, i = 1, ..., n$, are arbitrary functions of class $C^n(\mathbb{R})$. For equation (2), consider the Cauchy problem with the following initial conditions

$$\frac{\partial^{i} u}{\partial t^{i}}(x,0) = \varphi_{i}(x), \quad i = 0, \dots, n-1,$$
(4)

where $\varphi_i = \varphi_i(x), i = 0, ..., n - 1$, are given functions of class $C^{n-i}(\mathbb{R})$.

Remark 1. Note that solving the Cauchy problem (2), (4) in quadratures, using representation (3) of the general solution already in the case n = 3 encounters certain difficulties and these difficulties increase sharply as n increases. In order to get around these difficulties and taking into account that equation (2) is linear, we look for a solution to the Cauchy problem (2), (4) in the following form

$$u(x,t) = \sum_{i=1}^{n} u_i(x,t),$$
(5)

where $u_i(x,t)$ is the solution to the following Cauchy problem

$$Lu_i = \prod_{j=1}^n \left(\frac{\partial}{\partial t} - \lambda_j \frac{\partial}{\partial x}\right) u_i = 0, \tag{6}$$

$$\frac{\partial^{i-1}u_i}{\partial t^{i-1}}(x,0) = \varphi_{i-1}(x), \quad \frac{\partial^j u_i}{\partial t^j}(x,0) = 0, \quad j \neq i-1, \quad j = 0, \dots, n-1.$$
(7)

Moreover, taking into account the structure (3) of the general solution, we look for the solution itself to the Cauchy problem (6), (7) on the following form

$$u_i(x,t) = \sum_{j=1}^n \alpha_{ij} (\mathcal{J}^{i-1} \varphi_{i-1})(x+\lambda_j t), \qquad (8)$$

where α_{ij} are constants to be determined, and \mathcal{J}^{i-1} , is an operator that, for i > 1, acts according to the following formula

$$(\mathcal{J}^{i-1}\varphi_{i-1})(x) = \frac{1}{(i-2)!} \int_{0}^{x} (x-\tau)^{i-2}\varphi_{i-1}(\tau) d\tau$$
(9)

and represents an antiderivative of order i - 1, and when i = 1 it is assumed that

$$i = 1: (\mathcal{J}^{i-1}\varphi_0)(x) = \varphi_0(x).$$
 (10)

It is proved that the constants α_{ij} included in representation (8) are given by the formulas

$$\alpha_{ij} = \frac{\Delta_{ij}}{\Delta}, \quad i, j = 1, \dots, n, \tag{11}$$

where

$$\Delta = \begin{vmatrix} 1 & \cdots & 1 \\ \lambda_1 & \cdots & \lambda_n \\ \vdots \\ \lambda_1^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix} = \prod_{i < j} (\lambda_j - \lambda_i) \neq 0$$

is the Vandermonde determinant, and the determinant Δ_{ij} is obtained from the determinant Δ by replacing the *j*-th column with a column whose all elements are equal to zero, except for the *i*-th element, which is equal to one. Thus, if we take into account that to a solution of the problem (2), (4) uniqueness theorem holds [1], then the validity of the following theorem will follow from (5), (8)–(11).

Theorem. The unique solution to the Cauchy problem (2), (4) is given by the formula

$$u(x,t) = \sum_{i=1}^{n} u_i(x,t),$$

where

$$u_{1}(x,t) = \sum_{j=1}^{n} \alpha_{1j} \varphi_{0}(x+\lambda_{j}t),$$

$$u_{i}(x,t) = \frac{1}{(i-2)!} \sum_{j=1}^{n} \alpha_{ij} \int_{0}^{x+\lambda_{j}t} (x+\lambda_{i}t-\tau)^{i-2} \varphi_{i-1}(\tau) d\tau, \quad i=2,\dots,n,$$

and the constants α_{ij} are given by equalities (11).

REFERENCES

- 1. COURANT, R. Partial Differential Equations (Russian). Izdat. Mir, Moscow, 1964.
- 2. SIGUA, I., DZIRKVADZE, A. A form of a general solution for a class of high-order hyperbolic equations and some of its applications. *Semin. I. Vekua Inst. Appl. Math. Rep.*, **49** (2023), 88-92.

Received 23.05.2024; revised 23.07.2024; accepted 11.09.2024.

Author(s) address(es):

Irine Sigua Department of Mathematics, Georgian Technical University M. Kostava str. 77, 0175, Tbilisi, Georgia E-mail: irinasigua@gtu.ge

Mariam Vardanashvili Faculty of Informatics and Control Systems, Georgian Technical University M. Kostava str. 77, 0175, Tbilisi, Georgia E-mail: marivardanashvili2@gmail.com