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ON THE APPROXIMATE SOLUTION OF THE J. BALL’S BEAM EQUATION IN
THE CASE OF TEMPERATURE DEPENDENCE OF EFFECTIVE VISCOSITY

Archil Papukashvili Giorgi Geladze Meri Sharikadze

Abstract. An initial-boundary value problem is posed for the J. Ball integro-differential equa-
tion, which describes the dynamic state of a beam. The solution is approximated utilizing the
Galerkin method, stable symmetrical difference scheme and the Jacobi iteration method. This
paper presents the approximate solution to one practical problem. Particularly, the results of
numerical computations of the initial-boundary value problem for an iron beam. In the presented
article the case where the effective viscosity depends on the temperature is discussed. The results
of numerical calculations qualitatively satisfactorily describe the process under consideration.

1 Statement of the problem. Let us consider the nonlinear equation

utt (x, t) + δut (x, t) + γuxxxxt (x, t) + αuxxxx (x, t)

−

β + κ

L∫
0

u2
x (x, t) dx

 uxx (x, t)− σ

 L∫
0

ux (x, t) uxt (x, t) dx


×uxx (x, t) = f (x, t) , 0 < x < L, 0 < t ≤ T,

(1)

with the initial boundary conditions

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , (2)

u (0, t) = u (L, t) = 0, uxx (0, t) = uxx (L, t) = 0. (3)

Here α, γ, κ, σ, β, and δ are given constants, among which the first four are positive
numbers, while u0(x) ∈ W 2

2 (0, L) and u1(x) ∈ L2(0, L), are given functions such that
u0(0) = u1(0) = u0(L) = u1(L) = 0.

The right-hand side function f(x, t) ∈ L2((0, L)× (0, T )). We suppose that there exits
a solution u(x, t) ∈ W 2

2 ((0, L)× (0, T )) of problem (1)-(3).
The presented article is a direct continuation of the articles [1]-[5] that consider the

construction of algorithms and their corresponding numerical computations for the ap-
proximate solution of nonlinear integro-differential equations of the Timoshenko type.
In particular, in this work, an initial-boundary value problem is considered for the J.
Ball integro-differential equation, which describes the dynamic state of a beam (see, [6]).
The solution is approximated utilizing the Galerkin method, stable symmetrical differ-
ence scheme and the Jacobi iteration method. In the articles [2]-[3] the algorithm is
approved by tests. The articles [4]-[5] and the present paper consider the approximate
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solution to one practical problem, particularly, the results of numerical computations of
the initial-boundary value problem for an iron beam are represented in the tables.

A physical model that J. Ball uses in the article [6] is taken from the handbook
of Engineering Mechanics written by E. Mettler (see [7]). For this model he wrote the
corresponding initial-boundary value problem for the integro-differential equation of beam
(1) Here α, γ, κ, σ, β and δ are given constants from which the following five have the form

α =
E · I

ρ
, β =

E · A ·∆
L · ρ

, γ =
η · I
ρ

, κ =
E · A
2L · ρ

, σ =
Aη

L · ρ
.

Here, E denotes Young’s modulus, A is the cross-sectional area, η is the effective viscosity,
I is the cross-sectional second moment of area, ρ is the mass per unit length in the reference
configuration, L is beam length, ∆ is beam length change (extension) and δ the coefficient
of external damping.

2 The numerical realization. For the approximate solution of initial-boundary
value problem (1)-(3) several programs are composed in Maple, several numerical ex-
periments are carried out. This paper presents the approximate solution to one practical
problem. Particularly, the results of numerical computations of the initial-boundary value
problem for an iron beam are represented in the tables.

Issues of the initial-boundary value problem of the iron beam are studied for the
following meanings of parameters: L = 1 m, time T = 1 sec, the grid length of a spatial
variable H = 20, the grid length of a temporal variable M = 20, the amount of coordinate
functions in the Galerkin method n = 5; number of iterations niter = 5,

E = 1.9× 106 kg

cm2
, ρ = 7.874

g

cm3
, ∆ = 0.01 m, A = 0.01 m2, I = 1000 Pa.

We will see the case where the dependence of the effective viscosity on the temperature
is discussed. The effective viscosity has the form

η(tm) =
0.01775

1 + 0.0337 ∗ tm + 0.000221 ∗ t2m
, with tm - temperature C0 (see worcs [8]-[9]);

tm[i] = tm[0] + dtm ∗ t[i]; t[i] = i ∗ τ ; i = 0, M ; time t ∈ [0, 1]; α = 0.24613 × 106 · I,
β = 241.3, γ = 0.12954×I ·η, κ = 12065, σ = 0.0127×η, and δ = 0. The initial functions

u0(x) = sin
(πx

L

)
, u1(x) = 0, the right-hand function f(x, t) ≡ 0.

As the temperature increases, the viscosity decreases and therefore, naturally, the
bends u(x, t) increase with increasing modulus, which is confirmed by numerical exper-
iments, see table 1. We considered basically two different cases: a). A simple model
dtm = 0 C◦ (Case 1) - for each specific t we calculate η and in the corresponding differ-
ence equations we obtain constant coefficients γ, σ for all time layers; b). Complex model
dtm 6= 0C◦ - in difference equations we obtain coefficients γ, σ depending on t for all time
layers; We will see two options:

1. non-extreme situation (Case 2-4: dtm = 0.01C◦; 0.1C◦; 1C◦ (see Table 1);

2. extreme situation Case 5-7: dtm = 10C◦; 30C◦; 50C◦ (see Table 1);
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\x x = Case x = 0.2 x = 0.4 Case x = 0.2 x = 0.4
t = \ 0; 1 x = 0.8 x = 0.6 x = 0.8 x = 0.6

0 0 1 0.58778525 0.95105652 1 0.58778525 0.9510565
0 0 2 0.58778525 0.95105652 5 0.58778525 0.95105652
0 0 3 0.58778525 0.95105652 6 0.58778525 0.95105652
0 0 4 0.58778525 0.95105652 7 0.58778525 0.95105652

0.25 0 1 5.29005757 8.55949295 1 5.29005757 8.55949295
0.25 0 2 5.29005757 8.55949295 5 5.29005757 8.55949315
0.25 0 3 5.29005757 8.55949295 6 5.29005757 8.55949352
0.25 0 4 5.29005759 8.55949298 7 5.29005812 8.55949384
0.5 0 1 11.1678526 18.0699615 1 11.1678526 18.0699651
0.5 0 2 11.1678526 18.0699651 5 11.1678536 18.0699667
0.5 0 3 11.1678527 18.0699652 6 11.1678567 18.0699695
0.5 0 4 11.1678528 18.0699653 7 11.1678576 18.0699718
0.75 0 1 17.0455607 27.5802966 1 17.0455607 27.5802966
0.75 0 2 17.0455607 27.5802966 5 17.0455640 27.5802966
0.75 0 3 17.0455609 27.5802969 6 17.0455692 27.5803019
0.75 0 4 17.0455611 27.5802972 7 17.0455734 27.5803171
1 0 1 22.9231426 37.0904239 1 22.9231426 37.0904239
1 0 2 22.9231426 37.0904239 5 22.9231502 37.0904361
1 0 3 22.9231432 37.0904248 6 22.9231616 37.0904547
1 0 4 22.9231436 37.0904254 7 22.9231702 37.0904686

Table 1. (non-extreme situation: Case 2-4, extreme situation: Case 5-7)

Conclusion. In the presented article the case where the effective viscosity depends

on the temperature is discussed. As the temperature increases, the effective viscosity
decreases, so the deflections increase. The results of numerical calculations qualitatively
satisfactorily describe the process under consideration.
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