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ONE PROBLEM FOR THE COUPLED LINEAR THEORY OF PLANE
ELASTICITY FOR POROUS MATERIALS

Lia Mumladze

Abstract. In the present paper the linear coupled model of elastic porous materials is con-
sidered, which takes into account the coupled phenomenon of the concepts of Darcy’s law and
volume fraction. The general solution of the two-dimensional system of equations of plane de-
formation is represented by means of three analytic functions of a complex variable and solution
of Helmholtz equation. The Dirichlet boundary value problem is solved for the circle.
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1 Introduction. The theories of porous media have found applications in many
branches of civil engineering, geotechnical engineering, technology, hydrology, and recent
years, medicine and biology

The consolidation (quasi-static) theory of poroelasticity for isotropic porous materials
on the basis of Darcy’s law is presented in the pioneering work by Biot [1]. Nunziato and
Cowin [2] introduced a theory for the behavior of deformable porous materials based on
the volume fraction concept.

Many of the engineering problems have multiphysics nature and we encounter various
coupled processes in porous media. Recently, Svanadze [3, 4] introduced the linear mod-
els of elasticity and thermoelasticity for single porosity materials in which the coupled
phenomenon of the concepts of Darcy’s law and the volume fraction of pore network is
considered. The basic boundary value problems of these models are studied by Bitsadze
[5] and Tsagareli [6].

2 The basic equations. Let (x1, x2, x3) be a point of the Euclidean three dimen-
sional space R3. In what follows we consider an isotropic and homogeneous porous elastic
solid occupies a region of R3. The governing system of homogeneous equations of motion
in the coupled linear theory for porous materials consists of the following sets of equations
[3, 4]:

• Equations of motion

∂jtji = 0, ∂jσj + ξ = 0, i, j = 1, 2, 3, (1)

where tij is the component of the stress tensor, σi is the component of the equilibrated
stress associated to the pore network, ∂j = ∂

∂xj
, the function ξ is the intrinsic equilibrated

body force and is defined by

ξ = −bejj − α1ϕ + mp, (2)
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where ϕ is the change of volume fraction of pores, p is the change of fluid pressure in pore
network, eij is the component of strain tensor and is defined by

eij = 1
2
(∂jui + ∂iuj) , (3)

where ui are the components of the displacement vector in solid.
• Constitutive equations

tij = λekkδij + 2µeij + (bϕ− βp)δij,
σi = α′∂iϕ,

(4)

where λ and µ are the Lamé constants, β is the effective stress parameter, δij is the
Kronecker delta, the values b, m, α′ and α1 are the constitutive coefficients.

• From Equation of fluid mass conservation and Darcy’s law

k4p = 0, k = k′

µ′ , (5)

where µ′ is the fluid viscosity, k′ is the macroscopic intrinsic permeability associated with
the pore network.

3 The plane deformation. In the case of plane deformation u3 = 0 while the
functions u1, u2, ϕ and p do not depend on the coordinate x3 [7].

On the plane Ox1x2, we introduce the complex variable z = x1 +ix2 = reiα, (i2 = −1)
and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.

From (1)-(5) we obtain the following system of equations of motion in the coupled
linear theory for porous materials expressed in terms of the components of the displace-
ment vector field u1, u2, the change of volume fraction ϕ, the change of pressure p (in
the complex form)

µ∆u+ + 2(λ + µ)∂z̄θ + 2b∂z̄ϕ− 2β∂z̄p = 0,
(α′∆− α1)ϕ− bθ + mp = 0,
k∆p = 0.

(6)

Theorem 1. The general solution of system (6) is represented as follows [7, 8]:

2µu+ = κg(z)− zg′(z)− h(z)− k1(f(z) + zf ′(z))− k2∂z̄χ(z, z̄),

ϕ = χ(z, z̄)− k3(g
′(z) + g′(z)) + k4(f

′(z) + f ′(z)),

p = f ′(z) + f ′(z),

(7)

where g(z), h(z) and f(z) are the arbitrary analytic functions of a complex variable z,
χ(z, z̄) is an arbitrary solution of the Helmholtz equation

∆χ− γ2χ = 0, γ2 =
1

2

(
α1 +

b2

λ + 2µ

)
,
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and

κ =
ν

1− ν
, ν =

b(λ + µ)

α1(λ + 2µ) + b2
− λ + µ

2(λ + 2µ)
,

k1 =
2λ + 3µ

λ + 2µ

(
β +

b2β + bm(λ + µ)

b2 + α′(λ + 2µ)

)
, k2 =

4b(2λ + 3µ)

γ2(λ + 2µ)
,

k3 =
b(λ + 2µ)

(1− ν)(α1(λ + 2µ) + b2)
, k4 =

bβ + m(λ + µ)

b2 + α′(λ + 2µ)
.

4 The Dirichlet problem for the circle. Let us consider the elastic circle
bounded by the circumference of radius R (Fig. 1). The origin of coordinates is at
the center of the circle [8].

Figure 1: the poroelastic circle.

On the circumference, we consider the following boundary value problem

u+ = A, ϕ = B, p = C, r = R, (8)

where A, B and C are sufficiently smooth functions.
The analytic functions g(z), h(z), f(z) and the metaharmonic function χ(z, z̄) are

represented as the series [7]

g(z) =
∞∑

n=1

anz
n, h(z) =

∞∑
n=0

bnz
n, f(z) =

∞∑
n=1

cnz
n, χ(z, z̄) =

+∞∑
−∞

αnIn(γr)einϑ, (9)

where In(·) are the modified Bessel functions of the first kind of n-th order.
Expand the function A/2µ · eiα, B and C, given on r = R, in a complex Fourier series

A

2µ
eiα =

∞∑
−∞

Ane
inα, B =

∞∑
−∞

Bne
inα, C =

∞∑
−∞

Cne
inα. (10)

Substituting (7), (9), (10) into the boundary conditions (8) and comparing the coeffi-
cients of einα we have

κRa1 −Ra1 − k1Rc1 − k1Rc1 −
γk2

2
I1(γR)α0 = A1,
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−(n + 2)Rn+2an+2 −Rnbn − k1(n + 2)Rn+2cn+2 −
γk2

2
In(γR)αn+1

= A−n, n ≥ 0

κRnan − k1R
ncn −

γk2

2
In(γR)αn−1 = An, n ≥ 2

In(γR)αn − k3(n + 1)Rn+1an+1 + k4(n + 1)Rn+1cn+1 = Bn, n ≥ 0
nRncn = Cn−1, n ≥ 1.

(11)

From system (11) we can find all coefficients an, bn, cn, αn.
It is easy to prove the absolute and uniform convergence of the series obtained in the

circle (including the contours) when the functions set on the boundaries have sufficient
smoothness.

The procedure of solving a boundary value problem remains the same when stresses
and change in volume fraction on the domain boundary are given arbitrarily, but the
condition that the principal vector and the principal moment of external forces are equal
to zero is fulfilled.
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