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In the Universe, matter has manly two type geometric structures, homogeneous
isotropic, [1] and hierarchical, Russian-Doll-Like structures, [2]. The homogeneous struc-
tures are naturally described by real numbers with an infinite number of digits in the frac-
tional part and usual archimedean metrics. The hierarchical structures are described by
p-adic numbers with an infinite number of digits in the integer part and non-archimedean
metrics, [3]. A discrete, finite, regularized, version of the homogenous structures are ho-
mogeneous lattices with constant steps and distance rising as arithmetic progression. The
discrete version of the hierarchical structures is hierarchical lattice-tree with scale rising
in geometric progression.

We say that we find New Physics (NP) when either we find a phenomenon which
is forbidden by SM in principal - this is the qualitative level of NP - or we find a sig-
nificant deviation between precision calculations in SM of an observable quantity and a
corresponding experimental value. We believe that, beyond the SM regime, at higher
energies, NP will show up. Precision experiments provide us an important tool to find its
remnants already at todays energies. In 2017, the ATLAS Collaboration at CERN pub-
lished the LHC’s first measurement of the W-boson mass, giving a value of 80370±19
MeV. At the time, this measurement was the most precise single-experiment result,
and was in agreement with the SM prediction and all other experimental results. Re-
cently CDF collaboration has published [4] new measured value of the W-boson mass,
mW = 80.4335± 0.0094 GeV=80433.5± 9.4 MeV, which is in excess of the SM prediction
[5] mSMW = 80.375±0.006 GeV=80375±6 MeV, at 7σ level. Given the sizable difference
in the W mass, the NP scale needs to be not too far above the TeV scale. Moreover,
the NP could be at the electroweak scale if generating this discrepancy via loops. We
discuss the possibility to explain the anomaly in the constituent Higgs-(mH = 125 GeV),
W-(mW = 80 GeV) and Z-(mZ = 91 GeV) boson model. We propose a minimal super-
simmetric constituent model with valense mass m ∼ 40 Gev. In this model, W and H
are bound states. Direct NP searches at the LHC and other experiments will certainly
reveal or rule out the NP model candidates. Note that lead-208=82Pb126

208, the heaviest
stable nucleus, contains 82 protons and 126 neutrons. The seven most widely recognized
magic numbers are 2, 8, 20, 28, 50, 82, and 126. On the shell with angular momentum l
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we have 2(2l + 1) nucleons. The known doubly magic isotopes are helium-4, helium-10,
oxygen-16, calcium-40, calcium-48, nickel-48, nickel-56, nickel-78, tin-100, tin-132, and
lead-208=82Pb126

208. A simultaneous description of even-even and odd-A nuclei is possible
through the introduction of a super-algebra, energy levels in both nuclei belonging to the
same (super)multiplet, [6].

In the SM and its extensions the W-boson mass can be evaluated from, [7]

m2
W (1−m2

W /m2
Z) = a(1 + δ) = A, a =

πα√
2GF

, (1)

where GF is the Fermi constant, α is the fine structure constant, and δ represents the sum
of all non-QED loop diagrams to the muon-decay amplitude which itself depends on mW

as well. The relation (1) between the W -boson mass mW , the Z-boson mass mZ , the fine
structure constant α, and the Fermi constant GF , is of central importance for precision
tests of the electroweak theory. We can solve the equation (1) as

m2
W = (1±

√
1− 4A/m2

Z)m2
Z/2. (2)

To the observed value of the mW corrseponds

m2
W = (1−∆)m2

Z , ∆ = 1− m2
W

m2
Z

= (1−
√

1− 4A/m2
Z)/2 = 0.223 (3)

The second solution is

m2
W2 = ∆m2

Z , mW2 =
√

∆mZ = 43.0m2
W + m2

W2 = m2
Z . (4)

From the last equality in (4) the mass of the second particle is defined with precision
δmW2 ∼ mW /mW2δmW ∼ 2δmW . We obtain the same result without introducing ∆ in
(3). The sum of the two solutions in (2) is equal to M2

Z . One of the solutions corresponds
to m2

W , another solution gives m2
W2, so we have the mass rule m2

W + m2
W2 = m2

Z from
which we define the value of mW2 and corresponding precision. The Eq. (2) predicts both
values of mass. The value of the second mass is on the same precision as the first one and
is good motivation for the experimental research.

A large group of dominant radiative corrections can be absorbed in the shift of the ρ
parameter from its lowest order value ρBorn = 1. The result for the one-loop approxima-
tion

δρ = 3xt = 3
GF m2

t

8
√

2π2
' 9.43× 10−3 ' 10−2,

GF = 1.17× 10−5GeV −2, mt = 173.2± 0.7 (5)

was first evaluated in [8]. The one-loop result δ1 can be written as

δ1 = δα− δρ/(m2
Z/m2

W − 1) + δ(mH) (6)

It involves large fermionic contributions from the shift in the fine structure constant due
to light fermions, δα ∼ ln mf , and from the leading contribution to the ρ parameter δρ.
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The latter is quadratically dependent on the top-quark mass mt (5) as a consequence of
the large mass splitting in the isospin doublet. With the second mass,

δ1 = δα− δρ(m2
Z/m2

W − 1 + 1/(m2
Z/m2

W − 1)) + δ(mH)

Now the equation (1) gives correction ε on the right hand side

x(1− x) = A/m2
Z(1 + δ1 − ε), ε = δρ(m2

Z/m2
W − 1),

x = x0 + εx1, x0(1− x0) = A/m2
Z(1 + δ1),

x0 = m2
W /m2

Z , x1 = A/m2
Z(1 + δ1)/(2x0 − 1)

=
x0(1− x0)

2x0 − 1
= 0.139,

εx1 = 0.00137× 0.139 ' 2× 10−4,
mW ' mW0(1 + m2

Z0
/m2

W0
10−4) = (80375 + 10)MeV.

Let us consider the following formula

1

1− x
= (1 + x)(1 + x2)(1 + x4)..., |x| < 1. (7)

This formula can be used for the zeta function

ζ(s) =
∑
n≥1

n−s =
∏

p

(1− p−s)−1, Re s > 1, (8)

when x = xn = p−s
n . We consider the following regularized form of the product (7)

pk(x) ≡ (1 + x + 1/2k+1)(1 + x2)(1 + x4)...(1 + x2k

),
pk(−1) = 1/2, pk(−1− 1/2k+1) = 0,

|1/(1− xk)|2 = | 2k+1

1 + 2k+2
|2 = 1/2k+1 → 0, |0|2 = 0, |2n|2 = 2−n,

x = xk = −1− 1/2k+1 = −1− εk → −1, k →∞,

sk(p, l) = − ln(1 + εk)

ln p
+ i

π(2l + 1)

ln p
→ i

π(2l + 1)

ln p
(9)

We have zeros (9) at s = sk(pn) = (2k + 1)πi/ ln(pn), pn is prime, k is an integer number,
|pn|p = p−n is p-adic norm. The following integral representation allows to test these
non-Riemannian zeros (NRZ),

ζ(s) =
Γ(1 + s)−1

21−s − 22(1−s)

∫ ∞

0

tsdt

cosh2 t
,<s > −1. (10)

Let us estimate precision of the calculation,

I =

∫ ∞

0

dt

cosh2 t
= 1, I > I. =

∫ 100

0

dt

cosh2 t
= 1.0000000000000049?! (11)

The last integral calculated by Mathematica shows the typical error O(10−15) in the
following calculations, e.g. for the zero s3(2) = i7π/ log 2

I =

∫ 100

0

ts3(2)dt

cosh2 t
= RI + iIm, |I| < 1,
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RI =

∫ 100

0

cos(7π/ log 2 log t)dt

cosh2 t
= −8.37655× 10−16,

Im =

∫ 100

0

sin(7π/ log 2 log t)dt

cosh2 t
= −1.0894× 10−15 (12)

For the zeros, s(3)4 = i9π/ log 3

I =

∫ 100

0

ts(3)4dt

cosh2 t
= RI + iIm, |I| < 1,

RI =

∫ 100

0

cos(9π/ log 3 log t)dt

cosh2 t
= −3.64292× 10−16,

Im =

∫ 100

0

sin(9π/ log 3 log t)dt

cosh2 t
= −2.09728× 10−15,

s(3)4 = i9π/ log 3 = 25.74i (13)

All standard models of physics are of local type, are described by differential struc-
tures (Lagrangian and motion equations) and permit quantitative analysis by parallel al-
gorithms and corresponding programs. Today multiprocessor supercomputers (e.g. Gov-
orun, JINR Dubna) permit adaptation of the architecture to the algorithm of solution of
a physical problem (e.g. for QCD hydrodynamic motion equations or lattice formulation
of (non) equlibrium dynamics under NICA project) with the corresponding optimal con-
trol problem. Future supercomputers will probably contain also quantum processors with
their intrinsic parallel processes.
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