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THE MINIMAL REVERSE ENTROPY MARTINGALE MEASURE IN THE
TRINOMIAL FINANCIAL MODEL
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Abstract. In this paper we consider incomplete financial market, where evolution of risky asset
is described by trinomial scheme and construct the martingale measure which minimizes the
reverse relative entropy.
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1 Content. Let us consider a real valued process S = (Sn,Fn), n = 0, 1, 2, ..., N,
on the filtered probability space (Ω,F , (Fn)n≥0, P ), as an evolution of risky asset price on
financial market, such that

Sn = Sn−1(1 + ρn), (1)

where S0 > 0 is a constant, (ρn)n≥1, is the sequence of independent identically distributed
random variables that take three values a, b, c with the probabilities p, q, l respectively,p+
q + l = 1. We assume that a < b < c and −1 < a < 0 < c. This model is known as a
trinomial scheme. Here the reference measure P is defined by p, q, l on Ω = {a, b, c}N .

The measure Q is a martingale measure for S if Q is equivalent to P and S = (Sn,Fn)
is a martingale with respect to Q. The martingale condition

EQ[∆Sn/Fn−1] = 0

implies that

ap̃ + bq̃ + cl̃ = 0 (2)

and the class of martingale measures M(P ) for S is defined by p̃, q̃, l̃, which satisfy
the condition (2).

It can be shown, that density dQ
dP

= ZN(ρ1, ρ2, ..., ρN), Q ∈ M(P ) has the following
form (I(x) is the indicator of x):

ZN = ZN(ρ1, ρ2, ..., ρN) =
N∏

k=1

(
p̃

p
I(ρk = a) +

q̃

q
I(ρk = b

)
+

l̃

l
I(ρk = c)) =

N∏
k=1

ξk,

(3)
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where

ξk =
p̃

p
I(ρk = a) +

q̃

q
I(ρk = b) +

l̃

l
I(ρk = c). (4)

Definition 1. The reverse relative entropy RE(Q,P ) ([1]) of the probability measure Q
with respect to probability measure P is defined as

RE(Q,P ) =

 EP

[
− ln

dQ

dP

]
, if Q << P

+∞, otherwise.

Definition 2. The reverse relative entropy minimal martingale measure ([1], [2]) is the
measure Q∗ for which

RE(Q∗, P ) = min
Q∈M(P )

RE(Q, P ).

For our trinomial scheme (1) and from (3), (4) we get

RE(Q,P ) = E

[
− ln

dQ

dP

]
= E

[
− ln

N∏
k=1

ξk] = −
N∑

k=1

E[ln ξk

]
= −NE[ln ξ1] = −N

[
p ln p̃

p
+ q ln q̃

q
+ l ln l̃

l

]
.

(5)

Now we consider the minimization problem of RE(Q,P ) given by (5) over all martin-
gale measures Q ∈ M(P ) using Lagrange multiplier method ([3]). The Lagrangian has
the following form

Φ(p̃, q̃, l̃) = −

[
p ln

p̃

p
+ q ln

q̃

q
+ l ln

l̃

l

]
+λ

[
ap̃ + bq̃ + cl̃

]
+ µ

[
p̃ + q̃ + l̃ − 1

]
and from optimality conditions

∂Φ(p̃, q̃, l̃)

∂p̃
= 0,

∂Φ(p̃, q̃, l̃)

∂q̃
= 0,

∂Φ(p̃, q̃, l̃)

∂l̃
= 0,

we obtain

− p̃

p
+ λa + µ = 0, − q̃

q
+ λb + µ = 0, − l̃

l
+ λc + µ = 0.

Using this equalities and also taking into account (2) we can determine constants p̃, q̃, l̃, λ, µ.
Namely we get



The Minimal Reverse Entropy Martingale Measure in the ... 49

p̃ =
p

λa + 1
, q̃ =

q

λb + 1
, l̃ =

l

λc + 1
, µ = 1.

and λ satisfies the equation

λ2abc + λ[pa(b + c) + qb(a + c) + lc(a + b)] + ap + bq + cl = 0. (6)

Thus we proved the following

Theorem 1. The minimal reverse relative entropy martingale measure Q in the trinomial
model (1) is determined by the probabilities

p̃ =
p

λa + 1
, q̃ =

q

λb + 1
, l̃ =

l

λc + 1
,

where λ satisfy equation (6).

Corollary 1. In the particular symmetrical case, when a = −α, b = 0, c = α, with

(α > 0), equation (6) has the solution λ =
l − p

α(l + p)
and we obtain

p̃ =
p + l

2
, q̃ = q, l̃ =

p + l

2
.
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