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ON ONE CLASS OF SOLUTIONS OF 2D NAVIER-STOKES EQUATIONS FOR
THE INCOMPRESSIBLE FLUIDS

Nino Khatiashvili

Abstract. We consider 2D incompressible steady fluid flow in the finite and infinite areas. The
velocity components of the flow satisfy the nonlinear Navier - Stokes equations (NSE) with the
suitable boundary conditions. We modify NSE and find new class of solutions.The novel exact
solutions of NSE are obtained in some specific cases.
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In space R2 let us consider the area D with the boundary S. D is the finite or infinite
domain of plane xOy. In the paper we study the steady incompressible Newtonian fluid
flow in D. The governing system of equations is the stationary Navier-Stokes equations
(NSE) with the equation of continuity [1-7]
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where ~V (u, v) is the velocity, ~F (Fx, Fy) is the body force, P is the pressure, ρ is the
density, ν is the viscosity.

The system (1), (2), (3) is considered with the boundary conditions

u(x, y)|S = 0, v(x, y)|S = 0, (4)

In [6] the system (1),(2),(3) was reduced to the system
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where

F ∗ = −1

ρ
∆P + div ~F .

Let us introduce a new function ψ, which is double differentiable in D and satisfies the
condition ψ|S = 0.

Let us suppose

u = F1(ψ). (7)

By (7) the equation (5) can be rewritten in the form
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where f1(x), f2(x) are some double differentiable functions.
After simple transformations from (5),(6),(7),(11) we obtain
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Example. For the fluid flow in the whole plane x0y the solutions of problem (1), (2),
(3), (4) are

ψ = exp (x − y), u = exp (x − y) − 1, v = exp (x − y) − exp (−2x) − 1 − 2ν, P =
ρ exp (x− y), Fx = 0, Fy = 2exp (x− y) + 4νexp (−2x)− 2exp (−2x).

Conclusion. The solutions of problem (1), (2), (3), (4) are given by the formulas (12),
(13), if the functions f1, f2 satisfy the system (14), (15).

Remark 1. If the condition (10) is not fulfilled, there exist the solutions of the problem
(1),(2),(3),(4). For example,in the domain x > 0 the solutions can be given by

u = Aexp(x) sin(y), v = Aexp(x) cos(y)− Aexp(x), P = −A
2ρ

2
exp(2x)

Fx = −A2 exp2(x) cos(y), Fy = Aν exp(x),

where A is some constant.

Remark 2. The solutions of problem (1), (2), (3), (4) of different classes are given in
[1-7].
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