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ON TWO MULTIDIMENSIONAL SYSTEMS OF NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS ?

Temur Jangveladze

Abstract. Two multidimensional partial differential models are considered. The first one is
based on Maxwell’s well-known system of equations. The uniqueness of the solutions of the
corresponding initial-boundary value problems, the convergence of a decomposition method and
the finite-difference scheme are studied. The second multidimensional biological model is also
considered. Algorithms of sum approximation and variable directions have been studied.
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Two multidimensional systems of nonlinear partial differential equations (SNPDE) are
considered. One model is based on Maxwel’s well-known SNPDE [1]:

∂U

∂t
= −rot (vmrotH) ,

∂θ

∂t
= vm (rotH)2 . (1)

Maxwell’s system (1) is complex and its investigation and numerical resolution still
yield for special cases (see, for example, [2], [3] and references therein).

Note that, system (1) can be reduced to the following integro-differential form [4]:

∂H

∂t
= −rot

[
a

(∫ t

0

|rotH|2 dτ
)
rotH

]
, (2)

where a = a(S) is defined for S ∈ [0,∞).
Many works are devoted to the investigation of (1) systems and for integro-differential

models (2), corresponding to (1) (see, for example, [2] - [11] and references therein).
Let Ω be a bounded domain in the n-dimensional Euclidean space Rn, with suffi-

ciently smooth boundary ∂Ω. In the domain Q = Ω × (0, T ) of the variables (x, t) =
(x1, x2, ..., xn, t) let us consider the following first type initial-boundary value problem:

∂U

∂t
−

n∑
i=1

∂

∂xi

[
a

(∫ t

0

n∑
l=1

∣∣∣∣∂U∂xl
∣∣∣∣2
)
∂U

∂xi

]
= f(x, t), (x, t) ∈ Q, (3)

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], U(x, 0) = 0, x ∈ Ω, (4)

where T is a fixed positive constant, f is a given function of its arguments.
The problem (3), (4) is similar to the problems considered in [6] and [11]. It is proved,

using the modified version of Galerkin’s method and compactness arguments [12]:
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Theorem 1. If a(S) = 1+S, f ∈ W 1
2 (Q), f(x, 0) = 0, then problem (3), (4) has a unique

solution with the properties:

U ∈ L4

(
0, T ; Ẇ 1

4 (Ω)
)
,

∂U

∂t
,
√
T − t

∂2U

∂t∂xi
,
√
ψ

∂2U

∂xi∂xj
∈ L2(Q), i, j = 1, ..., n,

where ψ ∈ C∞(Ω), ψ(x) > 0, for x ∈ Ω; ∂ψ
∂v

= 0, for x ∈ ∂Ω, v is the outer normal of ∂Ω.
On [0, T ] let us introduce a net with mesh points denoted by tj = jτ, j = 0, 1..., J,

with τ = T/J . Let us construct additive averaged Rothe’s type scheme for (3), (4):

ηi
uj+1
i − uji
τ

=
∂

∂xi

[(
1 + τ

j+1∑
k=1

n∑
l=1

∣∣∣∣∂uki∂xl

∣∣∣∣2
)
∂uj+1

i

∂xi

]
+ f j+1

i , (5)

with homogeneous boundary and initial u0
i = u0 = 0 conditions, where uji (x), i = 1, ..., n,

j = 0, 1, ..., J − 1, are solutions of problem (5), and:

uj =
n∑
i=1

ηiu
j
i (x),

n∑
i=1

ηi = 1, ηi > 0,
n∑
i=1

f ji (x) = f j+1(x) = f(x, tj+1).

Theorem 2. If problem (3), (4) has a sufficiently smooth solution, then the solutions of
(5) converge to the solutions of problem (3), (4) and the following estimate is true

‖uj − U j‖ = O
(
τ 1/2

)
, j = 1, ..., J.

The convergence of the finite-difference scheme for the one-dimensional case of systems
(1) and equations (2) are also studied (see, for example, [2], [3], [8]).

Mathematical modeling of many applied problems leads to the following SNPDE:

∂U

∂t
=

n∑
α=1

∂

∂xα

(
Vα

∂U

∂xα

)
,

∂Vα
∂t

= −Vα + gα

(
Vα

∂U

∂xα

)
, α = 1, ..., n. (6)

If n = 2 and gα are given sufficiently smooth functions, γ0 ≤ gα(ξα) ≤ G0, and γ0, G0

are positive constants, then system (6) describes the biological model [13].
In the cylinder Q = Ω× (0, T ), where Ω = {x = (x1, ..., xn) : 0 < xα < 1, α = 1, ..., n},

consider system (6), with the following initial and boundary conditions:

U(x, 0) = U0(x), Vα0(x) = V0(x), x ∈ Ω, α = 1, ..., n, (7)

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ]. (8)

Here U0, Vα0, gα are given sufficiently smooth functions, such that: Vα0(x) ≥ δ0,
|g′
α(ξα)| ≤ G1, ξ ∈ R,α = 1, ..., n; where δ0, G1 are some positive constants.

Introducing the following grids, hereafter we will use the usual inner products and the
norms [14] for the grid functions:

ωαh = {xi1...ih = (i1h1, ..., iα−1hα−1, (iα − 1/2)hα, iα+1hα+1, ..., inhn),

iα = 1, ...,Mα, iβ = 0, ...,Mβ, β 6= α,Mβhβ = 1, β = 1, ..., n},
ωh = Ω ∩ ωh, γ = ωh \ ωh, ωh = ωh ∪ γh,

ωτ = {tj = jτ, j = 0, ..., J, Jτ = T}, ωhτ = ωh × ωτ , ωαhτ = ωαh × ωτ , α = 1, ..., n.
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Using the well-known approach and notations [14], [15], for all α = 1, ..., n, let us
correspond the variable directions type difference scheme to the problem (6) - (8):

uαt =
α∑
β=1

(
v̂βûβxβ

)
xβ

+
n∑

β=α+1

(
v̂βûβxβ

)
xβ
, vαt = −v̂α + gα(vαuαxα), (9)

uα(x, 0) = U0(x), x ∈ ωh, vα(x, 0) = vα0(x), x ∈ ωαh, (10)

uα(x, t) = 0, (x, t) ∈ γh × ωτ . (11)
In (9) the functions uα, α = 1, ..., n, are defined on ωhτ , while the vα on ωαhτ .

For the sufficient smoothness of the exact solution U, V1, ...., Vn of the problem (6) - (8),
each of the difference equations (9) approximates the corresponding differential equations
(6) with order of O(τ +

∑n
β=1 h

2
β) and O(τ + h2

α) respectively.

Theorem 3. If the differential problem (6) - (8) has a sufficiently smooth solution
U, V1, ..., Vn, then the solution of the scheme of the type of variable directions (9) - (11) is
absolutely stable with respect to initial data and converges to the exact solution of problem
(6) - (8) when τ → 0, hα → 0, α = 1, ..., n, and the following inequality holds

n∑
α=1

{‖(uα − U)xα ]|α + ‖vα − Vα]|α} ≤ O

(
τ +

n∑
α=1

h2
α

)
.

On each segment Mk= [k, (k + 1)τ ], k = 1, ..., J, let us consider the following averaged
model of sum approximation for initial-boundary value problem (6) - (8):

ηi
∂uki
∂t

=
∂

∂xi

(
vki
∂uki
∂xi

)
,

∂vki
∂t

= −vki + gi

(
vki
∂uki
∂xi

)
, (12)

u0
i (x, 0) = U0(x), v0

i (x, 0) = vi,0(x), (13)

uki |xi=0 = uki |xi=1 = 0, uki (x, tk) = uk−1(x, tk), vki = vk−1
i (x, tk), (14)

uk(x, t) =
n∑
i=1

ηiu
k
i (x, t), ηi > 0,

n∑
i=1

ηi = 1. (15)

Theorem 4. If the differential problem (6) - (8) has a sufficiently smooth solution, then
the solution of (12) - (15) converges to the exact solution when τ → 0 and

‖uk(t)− U(t)‖+
n∑
i=1

‖vki (t)− Vi(t)‖ = O(τ 1/2).

We should note that some questions of construction and investigation of the variable
direction schemes and the average model of sum approximation for multidimensional, as
well as difference schemes for onedimensional cases for the (6) type systems are discussed
in some other papers as well (see, for example, [16] - [19] and references therein).
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