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MATHEMATICAL MODEL OF DETONATION SHOCK WAVE PROPAGATION IN
A NONHOMOGENEOUS STAR

Temur Chilachava Rusudan Zedashidze

Abstract. The mathematical modeling of astrophysics processes is one of the most actual prob-
lem of modern applied mathematics. To solve many problems of astrophysics, it is necessary to
study the dynamics of gaseous bodies interacting with a gravitational field. The work consid-
ers a non-avtomodel problem about the central explosion of nonhomogeneous gas body (cubic
function of star density drop from central core to the surface) bordering vacuum, which is in
equilibrium in its own gravitational field. The solution of the problem in the vicinity behind the
detonation shock wave (the fracturing surface of the first kind) is sought in the form of a singular
asymptotic decomposition by a small parameter. Analytically, the main (zero) approximation
for the law of motion and the thermodynamic characteristics of the medium was accurately
found. The Cauchy problem for zero approximation of the law of motion of the detonation
shock wave is solved exactly, with the help of Appell hypergeometric function of two variables.
The asymptotics of the zero approximation of the law of the detonation shock wave is found at
the moment and during the time coming on the surface of the object. The time of coming on
the surface is also found.
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1 Introduction. To solve many problems of astrophysics, it is necessary to study
the dynamics of the interaction of gas bodies with the gravitational field. The concept of
studying celestial phenomena should be based on posing and solving a number of dynamic
problems about the motion of gravitational gas, which are considered to be important
mathematical models of stellar motion and evolution [1]. Then we solved several one-
dimensional and two-dimensional nonautomodel problems about explosive processes in gas
bodies and the spread of a detonation or shock wave to the surface of the body, followed by
a separation into the vacuum [2,3]. In these mathematical models, we considered mainly
homogeneous gas bodies.

2 Statement of the mixed problem for the system of nonlinear equations
in partial derivatives. We will use the equations of the adiabatic spherical-symmetric
motion of the gravitating gas in the Lagrangian form [2]
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here m is the mass of the r(m, t) radius sphere, k is a gravity constant, γ is an adiabatic
index, f(m) function is associated with the distribution of entropy over the Lagrangian
m coordinate, the r = r(m, t) function defines the law of motion of the medium, ∂r

∂t
is

medium speed, p(m, t) is medium pressure, ρ(m, t) is medium density.
The integral energy equation for the gas layer enclosed between the surfaces m = 0

and m = M(t) has the form:
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Ṁ

[
1

2

(
∂r

∂t

)2

+
p

(γ − 1)ρ
− kM

R
+ Q

]
− 4πr2∂r

∂t
p

}
1

dt (2)

T =
1

2

M∫
0
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where T, U, V is kinetic, internal and potential (gravitational) gas energy, E is the explo-
sion energy, m = M(t) is law of detonation shock wave motion by mass, R(t) = r(M(t), t)
is detonation shock wave radius. Indices 1, 2 denote respectively the gas position before
and after the surface of strong discontinuity.

If boundary conditions are solved with respect to parameters of the gas behind the
wave we get the following:
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Besides, the continuity of Euler’s and Lagrange’s variables ought to be taken into
account [r]21 = 0, [m]21 = 0.

Initial conditions (t = 0, phone) determine the initial state of a gravitating gas sphere
and are the exact solutions of system (1).

Thus, the initial-boundary problem is considered in the domain Ω = {t ∈ (0, t∗), m ∈
(0, M(t))}, where t = 0 is the moment of explosion, t∗ is the moment of time when
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the detonation wave comes out on the surface of the body. Boundary conditions on
the external unknown boundary m = M(t) are like (3) and in the center takes place
r(m, t) = 0, m = 0.

3 Exact solution before and approximate solution after detonation shock
wave. Let us discuss the problem of the central explosion at the t = 0 moment of a
nonhomogeneous gas sphere (star) balanced in its own gravitation field.

Thus, the exact solution of the system of equations (1) that corresponds to the nonho-
mogeneous gas sphere balanced in its own gravitation field is taken as an initial condition.

The gravitation constant k, the sphere center density ρc and the sphere radius a are
taken as main units of dimension
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Qualitative analysis of the system of equations (1) and boundary conditions (3) shows
that the solution in the vicinity behind the detonation shock wave can be sought in the
form of the next singular decomposition

r = R0(τ) + εH(m, τ) + ..., R(τ) = R0(τ) + εR1(τ) + ..., (5)
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Substituting (5) singular decomposition into the system of equations (1), integral
equation (2) and boundary conditions (3), we get a zero approximation to the solution of
the problem
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where the function r = r(m) is defined from the equation (4) and has the form
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The function R0(τ) in (6) is the solution of the following Cauchy problem
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is a hypergeometric function of two Appel variables,
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At that τ → 0+ asymptotics of Cauchy’s problem solution (8) are calculated, as well
as asymptotics at, where τ → τ∗− (τ∗ is time of detonation shock wave release to the
sphere surface)
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