Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 38, 2024

THE BOUNDARY VALUE PROBLEM FOR ONE CLASS OF HIGHER-ORDER NONLINEAR HYPERBOLIC SYSTEMS

Teona Bibilashvili

Abstract. The boundary value problem for one class of higher-order nonlinear hyperbolic systems is considered. The theorems on existence, uniqueness and nonexistence of solutions of this problem are proved.

Keywords and phrases: High-order nonlinear hyperbolic systems, the boundary value problem, existence, uniqueness and nonexistence of solutions.

AMS subject classification (2010): 35G30.

On a plane of variables x and t consider the following fourth-order hyperbolic systems

$$\Box^{2} u_{i} + f_{i} (u_{1}, \dots, u_{N}) = F_{i} (x, t), \quad i = 1, \dots, N,$$
(1)

where $\Box := \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}$; $f = (f_1, \dots, f_N)$ and $F = (F_1, \dots, F_N)$ are given functions, while $u = (u_1, \dots, u_N)$ is an unknown N-dimensional vector function, $N \ge 2$.

Denote by $D_T : 0 < x < t$, t < T the angular domain bounded by characteristic segment $\gamma_{1,T} : x = t$, $0 \le t \le T$, $\gamma_{2,T} : x = 0$, $0 \le t \le T$ and $\gamma_{3,T} : t = T$, $0 \le x \le T$, temporal and spatial orientation segments, respectively.

For system (1) in the domain D_T consider the boundary value problem with the following statement: find in the domain D_T a solution $u = (u_1(x,t), \ldots, u_N(x,t))$ to system (1) which on the boundary $\partial D_T = \gamma_{1,T} \cup \gamma_{2,T} \cup \gamma_{3,T}$ of the domain D_T satisfies the following homogeneous conditions

$$u|_{\gamma_{1,T}} = u(t,t) = 0, \quad 0 \le t \le T,$$
(2)

$$u|_{\gamma_{2,T}} = u(0,t) = 0, \quad u_x|_{\gamma_{2,T}} = u_x(0,t) = 0, \quad 0 \le t \le T,$$
(3)

$$u|_{\gamma_{3,T}} = u(x,T) = 0, \quad u_t|_{\gamma_{3,T}} = u_t(x,T) = 0.$$
 (4)

It should be noted that in the scalar case, the Darboux type problem for the nonlinear equation (1) in the angular domain D_T , when the boundary conditions are given only on the $\gamma_{1,T}$ and $\gamma_{2,T}$ parts of the boundary of this domain, is discussed in [1]. Boundary value problems for higher-order nonlinear partial differential equations and systems with a different structure are studied in papers [2][4] (see also the literature cited in these papers).

Introduce the Hilbert space $\overset{o}{W}_{2,\Box}^1(D_T)$ as a completion with respect to the norm

$$\left\|u\right\|_{\tilde{W}^{1}_{2,\Box}(D_{T})}^{2} = \int_{D_{T}} \left[u^{2} + \left(\frac{\partial u}{\partial t}\right)^{2} + \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\Box u\right)^{2}\right] dxdt$$
(5)

of the classical space

$$\overset{o}{C}{}^{k}\left(\overline{D}_{T},\partial D_{T}\right) := \{ u \in C^{k}\left(\overline{D}_{T}\right) : u|_{\gamma_{1,T}} = 0, \quad u|_{\gamma_{2,T}} = u_{x}|_{\gamma_{2,T}} = 0,$$
$$u|_{\gamma_{3,T}} = u_{t}|_{\gamma_{3,T}} = 0, \} \quad k \ge 1,$$

for k=2.

It follows from (5) that if $u \in \overset{o}{W}{}_{2,\Box}^1(D_T)$, then $u \in \overset{o}{W}{}_2^1(D_T)$ and $\Box u \in L_2(D_T)$. Here $W_2^1(D_T)$ is the well-known Sobolev space consisting of the elements of $L_2(D_T)$, having the first order generalized derivatives from $L_2(D_T)$, and $\overset{o}{W}{}_2^1(D_T) := \{u \in W_2^1(D_T) : u|_{\partial D_T} = 0\}$, where the equality $u|_{\partial D_T} = 0$ is understood in the sense of the trace theory.

Below, on the nonlinear vector function $f = (f_1, \ldots, f_N)$ from (1) we impose the following requirements

$$f \in C\left(\mathbb{R}^{N}\right), |f\left(u\right)| \leq M_{1} + M_{2} |u|^{\alpha}, \quad \alpha = const > 1, \quad u \in \mathbb{R}^{N},$$
 (6)

where $|\cdot|$ is the norm of the space \mathbb{R}^N , $M_i = const \ge 0$, i = 1, 2.

Definition 1. Let the vector function f satisfy the condition (6) and $F \in L_2(D_T)$. The vector function $u \in \overset{o}{W}_{2,\square}^1(D_T)$ is said to be a weak generalized solution of the problem (1) - (4), if for any vector function $\varphi = (\varphi_1, \ldots, \varphi_N) \in \overset{o}{W}_{2,\square}^1(D_T)$ the integral equality

$$\int_{D_T} \Box u \Box \varphi dx dt + \int_{D_T} f(u) \varphi dx dt = \int_{D_T} F \varphi dx dt \quad \forall \varphi \in \overset{o}{W}{}^1_{2,\Box}(D_T)$$
(7)

is valid.

It is easy to verify, that the classical solution $u \in \overset{o}{C}{}^4 (\overline{D}_T, \partial D_T)$ of the problem (1)-(4) represents a weak generalized solution according to the Definition 1, i.e. it satisfies the integral identity (7), on the other hand, if the weak generalized solution of the problem (1) - (4) belongs to the class $\overset{o}{C}{}^4 (\overline{D}_T, \partial D_T)$, then it will be the classical solution of this problem.

Consider the following condition

$$\lim_{|u| \to \infty} \inf \frac{uf(u)}{|u|^2} \ge 0, \tag{8}$$

which concerns the behavior of the vector function f in a neighborhood of infinity, where

$$uf(u) = \sum_{i=1}^{N} u_i f_i(u), \quad |u|^2 = \sum_{i=1}^{N} u_i^2.$$

Lemma 1. Let $F \in L_2(D_T)$ and let conditions (6) and (8) be fulfilled. Then for a weak generalized solution $u \in \overset{\circ}{W}_{2,\Box}^1(D_T)$ of the boundary value problem (1)(4) the following a priori estimate

$$\|u\|_{\overset{o}{W^{1}_{2,\Box}(D_{T})}} \leq c_{1} \|F\|_{L_{2}(D_{T})} + c_{2}$$

is valid, where the constants $c_1 > 0$ and $c_2 \ge 0$, independent of u and F.

The validity of the following theorem follows from Lemma 1 and the Leray–Schauder theorem.

Theorem 1. Let the conditions (6) and (8) be fulfilled. Then for any vector function $F = (F_1, \ldots, F_N) \in L_2(D_T)$ the boundary value problem (1)(4) has at least one weak generalized solution $u = (u_1, \ldots, u_N)$ in the space $\overset{\circ}{W}_{2,\Box}^1(D_T)$.

Consider the following condition imposed on the vector function f

$$(f(u) - f(v))(u - v) \le 0 \quad \forall u, v \in \mathbb{R}^N.$$
(9)

Regarding the uniqueness of a weak generalized solution of the boundary value problem (1)(4), the following theorem is true.

Theorem 2. Let the vector function f satisfy the conditions (6) and (8). Then for any vector function $F \in L_2(D_T)$ the boundary value problem (1) - (4) cannot have more than one weak generalized solution $u \in \overset{\circ}{W}_{2,\Box}^1(D_T)$.

The following theorem follows from Theorems 1 and 2.

Theorem 3. Let the vector function f satisfy the conditions (6), (8) and (9). Then for any vector function $F = (F_1, \ldots, F_N) \in L_2(D_T)$ the problem (1) - (4) has a unique weak generalized solution $u = (u_1, \ldots, u_N)$ in the space $\overset{o}{W}_{2,\Box}^1(D_T)$.

Now let us give one class of vector functions f, when the condition (6) is satisfied, but the condition (8) is violated, and in this case for a sufficiently wide class of vector functions $F = (F_1, \ldots, F_N) \in L_2(D_T)$ the problem (1) - (4) has no weak generalized solution. This class is given by the following formula

$$f_i(u_1, \dots, u_N) = \sum_{j=1}^N a_{ij} |u_j|^{\beta_{ij}} + b_i, \quad i = 1, \dots, N,$$
(10)

where constants a_{ij} , βij and b_i satisfy the following inequalities

$$a_{ij} > 0, \quad \beta_{ij} = const > 1, \quad \sum_{i=1}^{N} b_i > 0, \quad i, j = 1, \dots, N.$$
 (11)

The following theorem holds.

Theorem 4. Let the vector function $f_N = (f_1, \ldots, f_N)$ satisfy the conditions (10) and

(11), $F^0 = (F_1^0, \ldots, F_N^0) \in L_2(D_T)$, $\sum_{i=1}^N F_i^0 < 0$, and $F = \mu F^0$, $\mu = const > 0$. Then there exists a number $\mu_0 = \mu_0(a_{ij}, \beta_{ij}) > 0$ such that the problem (1) – (4) has no weak generalized solution $u \in \overset{o}{W}_{2,\square}^1(D_T)$, when $\mu > \mu_0$.

REFERENCES

- BIBILASHVILI, T., KHARIBEGASHVILI, S. Darboux type problem for one nonlinear hyperbolic equation of the fourth order. *Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics*, 36 (2022), 11–14.
- KHARIBEGASHVILI, S., MIDODASHVILI, B. A boundary value problem for higher-order semilinear partial dierential equations. *Complex Variables and Elliptic Equations*, 64, 5 (2019), 766–776.
- KHARIBEGASHVILI, S.S., MIDODASHVILI, B.G. On the Solvability of a Special Boundary Value Problem in a Cylindrical Domain for a Class of Nonlinear Systems of Partial Differential Equations. *Differential Equations*, 58, 1 (2022), 81–91.
- GALACTIONOV, V.A., MITIDIERI, E.L., POHOZHAEV, S.I. Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations. Series: Chapman & Hall / CRC Monographs and Research Notes in Mathematics, 2014.

Received 23.05.2024; revised 13.07.2024; accepted 16.09.2024.

Author(s) address(es):

Teona Bibilashvili Department of Mathematics, Georgian Technical University Kostava str. 77, 0171 Tbilisi, Georgia E-mail: teonabibilashvili12@gmail.com