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Abstract. The boundary value problem for one class of higher-order nonlinear hyperbolic
systems is considered. The theorems on existence, uniqueness and nonexistence of solutions of
this problem are proved.
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On a plane of variables x and t consider the following fourth-order hyperbolic systems

�2ui + fi (u1, . . . , uN) = Fi (x, t) , i = 1, . . . , N, (1)

where � := ∂2

∂t2
− ∂2

∂x2 ; f = (f1, . . . , fN) and F = (F1, . . . , FN) are given functions, while
u = (u1, . . . , uN) is an unknown N−dimensional vector function, N ≥ 2.

Denote by DT : 0 < x < t, t < T the angular domain bounded by characteristic
segment γ1,T : x = t, 0 ≤ t ≤ T, γ2,T : x = 0, 0 ≤ t ≤ T and γ3,T : t = T, 0 ≤ x ≤ T,
temporal and spatial orientation segments, respectively.

For system (1) in the domain DT consider the boundary value problem with the
following statement: find in the domain DT a solution u = (u1 (x, t) , . . . , uN (x, t)) to
system (1) which on the boundary ∂DT = γ1,T ∪γ2,T ∪γ3,T of the domain DT satisfies the
following homogeneous conditions

u|γ1,T
= u(t, t) = 0, 0 ≤ t ≤ T, (2)

u|γ2,T
= u(0, t) = 0, ux|γ2,T

= ux(0, t) = 0, 0 ≤ t ≤ T, (3)

u|γ3,T
= u(x, T ) = 0, ut|γ3,T

= ut(x, T ) = 0. (4)

It should be noted that in the scalar case, the Darboux type problem for the nonlinear
equation (1) in the angular domain DT , when the boundary conditions are given only
on the γ1,T and γ2,T parts of the boundary of this domain, is discussed in [1]. Boundary
value problems for higher−order nonlinear partial differential equations and systems with
a different structure are studied in papers [2][4] (see also the literature cited in these
papers).
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Introduce the Hilbert space
o

W 1
2,� (DT ) as a completion with respect to the norm

‖u‖2
o

W 1
2,�

(DT )
=

∫
DT

[
u2 +

(
∂u

∂t

)2

+

(
∂u

∂x

)2

+ (�u)2

]
dxdt (5)

of the classical space

o

C
k
(
DT , ∂DT

)
:= {u ∈ Ck

(
DT

)
: u|γ1,T

= 0, u|γ2,T
= ux|γ2,T

= 0,

u|γ3,T
= ut|γ3,T

= 0, } k ≥ 1,

for k=2.
It follows from (5) that if u ∈

o

W 1
2,� (DT ), then u ∈

o

W 1
2 (DT ) and �u ∈ L2 (DT ). Here

W 1
2 (DT ) is the well−known Sobolev space consisting of the elements of L2 (DT ), having

the first order generalized derivatives from L2 (DT ), and
o

W 1
2 (DT ) := {u ∈ W 1

2 (DT ) :u|∂DT

= 0} , where the equality u|∂DT
= 0 is understood in the sense of the trace theory.

Below, on the nonlinear vector function f = (f1, . . . , fN) from (1) we impose the
following requirements

f ∈ C
(
RN

)
, |f (u)| ≤ M1 + M2 |u|α , α = const > 1, u ∈ RN , (6)

where | · | is the norm of the space RN , Mi = const ≥ 0, i = 1, 2.

Definition 1. Let the vector function f satisfy the condition (6) and F ∈ L2 (DT ). The

vector function u ∈
o

W 1
2,� (DT ) is said to be a weak generalized solution of the problem

(1)− (4), if for any vector function ϕ = (ϕ1, . . . , ϕN) ∈
o

W 1
2,� (DT ) the integral equality∫

DT

�u�ϕdxdt +

∫
DT

f (u) ϕdxdt =

∫
DT

Fϕdxdt ∀ϕ ∈
o

W
1
2,� (DT ) (7)

is valid.
It is easy to verify, that the classical solution u ∈

o

C 4
(
DT , ∂DT

)
of the problem (1)−(4)

represents a weak generalized solution according to the Definition 1, i.e. it satisfies the
integral identity (7), on the other hand, if the weak generalized solution of the problem

(1) − (4) belongs to the class
o

C 4
(
DT , ∂DT

)
, then it will be the classical solution of this

problem.
Consider the following condition

lim
|u|→∞

inf
uf (u)

|u|2
≥ 0, (8)

which concerns the behavior of the vector function f in a neighborhood of infinity, where

uf (u) =
N∑

i=1

uifi (u) , |u|2 =
N∑

i=1

u2
i .
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Lemma 1. Let F ∈ L2 (DT ) and let conditions (6) and (8) be fulfilled. Then for a weak

generalized solution u ∈
o

W 1
2,� (DT ) of the boundary value problem (1)(4) the following a

priori estimate
‖u‖ o

W 1
2,�

(DT )
≤ c1 ‖F‖L2(DT ) + c2

is valid, where the constants c1 > 0 and c2 ≥ 0, independent of u and F .

The validity of the following theorem follows from Lemma 1 and the Leray−Schauder
theorem.

Theorem 1. Let the conditions (6) and (8) be fulfilled. Then for any vector function
F = (F1, . . . , FN) ∈ L2 (DT ) the boundary value problem (1)(4) has at least one weak

generalized solution u = (u1, . . . , uN) in the space
o

W 1
2,� (DT ).

Consider the following condition imposed on the vector function f

(f (u)− f (v)) (u− v) ≤ 0 ∀u, v ∈ RN . (9)

Regarding the uniqueness of a weak generalized solution of the boundary value problem
(1)(4), the following theorem is true.

Theorem 2. Let the vector function f satisfy the conditions (6) and (8). Then for any
vector function F ∈ L2 (DT ) the boundary value problem (1)− (4) cannot have more than

one weak generalized solution u ∈
o

W 1
2,� (DT ).

The following theorem follows from Theorems 1 and 2.

Theorem 3. Let the vector function f satisfy the conditions (6), (8) and (9). Then for
any vector function F = (F1, . . . , FN) ∈ L2 (DT ) the problem (1)− (4) has a unique weak

generalized solution u = (u1, . . . , uN) in the space
o

W 1
2,� (DT ).

Now let us give one class of vector functions f , when the condition (6) is satisfied,
but the condition (8) is violated, and in this case for a sufficiently wide class of vector
functions F = (F1, . . . , FN) ∈ L2 (DT ) the problem (1) − (4) has no weak generalized
solution. This class is given by the following formula

fi (u1, . . . , uN) =
N∑

j=1

aij |uj|βij + bi, i = 1, . . . , N, (10)

where constants aij, βij and bi satisfy the following inequalities

aij > 0, βij = const > 1,
N∑

i=1

bi > 0, i, j = 1, . . . , N. (11)

The following theorem holds.
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Theorem 4. Let the vector function f = (f1, . . . , fN) satisfy the conditions (10) and

(11), F 0 = (F 0
1 , . . . , F 0

N) ∈ L2 (DT ) ,

N∑
i=1

F 0
i < 0, and F = µF 0, µ = const > 0. Then

there exists a number µ0 = µ0 (aij, βij) > 0 such that the problem (1) − (4) has no weak

generalized solution u ∈
o

W 1
2,� (DT ) , when µ > µ0.
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