Reports of Enlarged Sessions of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 31, 2017

ON THE SPACES OF SPHERICAL POLYNOMIALS AND GENERALIZED THETA-SERIES WITH QUADRATIC FORMS OF FIVE VARIABLES

Ketevan Shavgulidze

Abstract

The spherical polynomials of order $\nu=2$ with respect to quadratic form of five variables are constructed and the basis of the space of these spherical polynomials is established. The space of generalized theta-series with respect to the quadratic form of five variables is considered. The basis of this space is constructed.

Keywords and phrases: Quadratic form, spherical polynomial, generalized theta-series.
AMS subject classification (2010): 11E20, 11E25, 11F27.

1 Introduction. Let

$$
Q(X)=Q\left(x_{1}, \cdots, x_{r}\right)=\sum_{1 \leq i \leq j \leq r} b_{i j} x_{i} x_{j}
$$

be an integer positive definite quadratic form of r variables and let $A=\left(a_{i j}\right)$ be the symmetric $r \times r$ matrix of quadratic form $Q(X)$, where $a_{i i}=2 b_{i i}$ and $a_{i j}=a_{j i}=b_{i j}$, for $i<j$. Let $A_{i j}$ denote the cofactor to the element $a_{i j}$ in A and $a_{i j}^{*}$ is the element of the inverse matrix A^{-1}.

A homogeneous polynomial $P(X)=P\left(x_{1}, \cdots, x_{r}\right)$ of degree ν with complex coefficients, satisfying the condition

$$
\begin{equation*}
\sum_{1 \leq i, j \leq r} a_{i j}^{*}\left(\frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}\right)=0 \tag{1}
\end{equation*}
$$

is called a spherical polynomial of order ν with respect to $Q(X)$ (see [1]), and

$$
\vartheta(\tau, P, Q)=\sum_{n \in \mathbb{Z}^{r}} P(n) z^{Q(n)}, \quad z=e^{2 \pi i \tau}, \quad \tau \in \mathbb{C}, \quad \operatorname{Im} \tau>0
$$

is the corresponding generalized r-fold theta-series.
Let $P(\nu, Q)$ denote the vector space over \mathbb{C} of spherical polynomials $P(X)$ of even order ν with respect to $Q(X)$. Hecke [2] calculated the dimension of the space $P(\nu, Q)$, $\operatorname{dim} P(\nu, Q)=\binom{\nu+r-1}{r-1}-\binom{\nu+r-3}{r-1}$ and form the basis of the space of spherical polynomials of second order with respect to $Q(X)$.

Let $T(\nu, Q)$ denote the vector space over \mathbb{C} of generalized multiple theta-series, i.e.,

$$
T(\nu, Q)=\{\vartheta(\tau, P, Q): P \in \mathcal{P}(\nu, Q)\}
$$

Gooding [1] calculated the dimension of the vector space $T(\nu, Q)$ for reduced binary quadratic forms Q. Gaigalas [3] gets the upper bounds for the dimension of the space $T(4, Q)$ and $T(6, Q)$ for some diagonal quadratic forms. In [4-6] we established the upper bounds for the dimension of the space $T(\nu, Q)$ for some quadratic forms of r variables, when $r=3,4,5$, in a number of cases we calculated the dimension and form the bases of these spaces.

In this paper we form the basis of the space of spherical polynomials of second order $P(2, Q)$ with respect to some diagonal quadratic form $Q(X)$ of five variables and obtained the basis of the space of generalized theta-series $T(2, Q)$ with spherical polynomial P of second order and diagonal quadratic form Q of five variables.

2 The basis of the space $P(2, Q)$ and $T(2, Q)$. Let

$$
Q(X)=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44} x_{4}^{2}+b_{55} x_{5}^{2},
$$

where $0<b_{11}<b_{22}<b_{33}<b_{44}<b_{55}$ is a quadratic form of five variables. For these forms

$$
D=\operatorname{det} A=2^{5} b_{11} b_{22} b_{33} b_{44} b_{55}, \quad a_{i i}^{*}=\frac{1}{2 b_{i i}}, \quad a_{i j}^{*}=0 .
$$

Let

$$
P(X)=P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \sum_{l=0}^{j} a_{k i j l} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} x_{4}^{j-l} x_{5}^{l}
$$

be a spherical function of order ν with respect to the positive quadratic form $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ of five variables and let

$$
L=\left[a_{0000}, a_{1000}, a_{1100}, a_{1110}, a_{1111}, a_{2000}, \ldots, a_{\nu \nu \nu \nu}\right]^{T}
$$

be the column vector, where $a_{k i j l}(0 \leq l \leq j \leq i \leq k \leq \nu)$ are the coefficients of the polynomial $P(X)$.

We have [6], that $\operatorname{dim} P(\nu, Q)=\binom{\nu+4}{4}-\binom{\nu+2}{4}$. The polynomials (the coefficients of polynomial P_{i} are given in the brackets)

$$
\begin{aligned}
& P_{1}\left(a_{0000}^{(1)}, a_{1000}^{(1)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \nu-2}^{(1)}, 1,0,0, \ldots, 0\right), \\
& P_{2}\left(a_{0000}^{(2)}, a_{1000}^{(2)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \nu-2}^{(2)}, 0,1,0, \ldots, 0\right), \\
& \cdot \\
& P_{t}\left(a_{0000}^{(t)}, a_{1000}^{(t)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \nu-2}^{(t)}, 0,0,0, \ldots, 1\right),
\end{aligned}
$$

where the first $\binom{\nu+2}{4}$ coefficients from a_{0000} to $a_{\nu-2, \nu-2, \nu-2, \nu-2}$ are calculated through other $\binom{\nu+4}{4}-\binom{\nu+2}{4}=t$ coefficients, form the basis of the space $P(\nu, Q)$.

The basis spherical polynomials of second order $(\nu=2)$ with respect to $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ have the form:

$$
\begin{array}{llc}
P_{1}=a_{0000}^{(1)} x_{1}^{2}+x_{1} x_{2}, & P_{2}=a_{0000}^{(2)} x_{1}^{2}+x_{1} x_{3}, & P_{3}=a_{0000}^{(3)} x_{1}^{2}+x_{1} x_{4}, \\
P_{4}=a_{0000}^{(4)} x_{1}^{2}+x_{1} x_{5}, & P_{5}=a_{0000}^{(5)} x_{1}^{2}+x_{2}^{2}, & P_{6}=a_{0000}^{(6)} x_{1}^{2}+x_{2} x_{3}, \\
P_{7}=a_{0000}^{(7)} x_{1}^{2}+x_{2} x_{4}, & P_{8}=a_{0000}^{(8)} x_{1}^{2}+x_{2} x_{5}, & P_{9}=a_{0000}^{(9)} x_{1}^{2}+x_{3}^{2}, \\
P_{10}=a_{0000}^{(10)} x_{1}^{2}+x_{3} x_{4}, & P_{11}=a_{0000}^{(11)} x_{1}^{2}+x_{3} x_{5}, & P_{12}=a_{0000}^{(12)} x_{1}^{2}+x_{4}^{2}, \\
P_{13}=a_{0000}^{(13)} x_{1}^{2}+x_{4} x_{5}, & P_{14}=a_{0000}^{(14)} x_{1}^{2}+x_{5}^{2} . &
\end{array}
$$

Using (1) for P_{i} we have

$$
P_{5}=-\frac{b_{11}}{b_{22}} x_{1}^{2}+x_{2}^{2}, \quad P_{9}=-\frac{b_{11}}{b_{33}} x_{1}^{2}+x_{3}^{2}, \quad P_{12}=-\frac{b_{11}}{b_{44}} x_{1}^{2}+x_{4}^{2}, \quad P_{14}=-\frac{b_{11}}{b_{55}} x_{1}^{2}+x_{5}^{2}
$$

and for other P_{i} the coefficient $a_{0000}^{(i)}=0$. They form the basis of the space of spherical polynomials of second order with respect to $Q(x)$ and $\operatorname{dim} P(2, Q)=\binom{6}{4}-\binom{4}{4}=14$.

Now we construct the corresponding generalized theta-series.

$$
\begin{aligned}
& \vartheta\left(\tau, P_{5}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n} P_{5}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{22}} x_{1}^{2}+x_{2}^{2}\right)\right) z^{n} \\
& -2 \frac{b_{11}}{b_{22}} z^{b_{11}}+\cdots+2 z^{b_{22}}+\cdots+0 z^{b_{33}}+\cdots+0 z^{b_{44}}+\cdots+0 z^{b_{55}}+\ldots, \\
& \vartheta\left(\tau, P_{9}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n} P_{9}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{33}} x_{1}^{2}+x_{3}^{2}\right)\right) z^{n} \\
& -2 \frac{b_{11}}{b_{33}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\cdots+2 z^{b_{33}}+\cdots+0 z^{b_{44}}+\cdots+0 z^{b_{55}}+\ldots, \\
& \vartheta\left(\tau, P_{12}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n} P_{12}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{44}} x_{1}^{2}+x_{4}^{2}\right)\right) z^{n} \\
& -2 \frac{b_{11}}{b_{44}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\cdots+0 z^{b_{33}}+\cdots+2 z^{b_{44}}+\cdots+0 z^{b_{55}}+\ldots, \\
& \vartheta\left(\tau, P_{14}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n} P_{14}(x)\right) z^{n}=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{55}} x_{1}^{2}+x_{5}^{2}\right)\right) z^{n} \\
& -2 \frac{b_{11}}{b_{55}} z^{b_{11}}+\cdots+0 z^{b_{22}}+\cdots+0 z^{b_{33}}+\cdots+0 z^{b_{44}}+\cdots+2 z^{b_{55}}+\ldots,
\end{aligned}
$$

These generalized theta-series are linearly independent since the determinant constructed from the coefficients of these theta-series is not equal to zero. In [6] we have $\operatorname{dim} T(\nu, Q) \leq$ $\binom{\frac{\nu}{2}+3}{3}$ and for $\nu=2$ we have $\operatorname{dim} T(2, Q) \leq 4$. Hence this theta-series form the basis of the space $T(2, Q)$. We have the following

Theorem 1. $\operatorname{dim} T(2, Q)=4$ and the generalized theta-series:

$$
\vartheta\left(\tau, P_{5}, Q\right) ; \vartheta\left(\tau, P_{9}, Q\right) ; \vartheta\left(\tau, P_{12}, Q\right) ; \vartheta\left(\tau, P_{14}, Q\right)
$$

form the basis of the space $T(2, Q)$.

REFERENCES

1. Gooding, F. Modular forms arising from spherical polynomials and positive definite, quadratic forms. J. Number Theory, 9 (1977), 36-47.
2. Hecke, E. Mathematische Werke. Vandenhoeck und Ruprecht, Göttingen, 1970.
3. Gaigalas, E. On the dimension of some spaces of generalized theta-series. Lith. Math. J., 50, 2 (2010), 179-186.
4. Shavgulidze, K. On the dimension of some spaces of generalized ternary theta-series. Georgian Math. J., 9 (2002), 167-178.
5. Shavgulidze, K. On the dimension of spaces of generalized quaternary theta-series. Proc. I. Vekua Inst. Appl. Math., 59-60 (2009-2010), 60-75.
6. Shavgulidze, K. On the space of spherical polynomials with quadratic forms of five variables. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math., 29 (2015), 119-122.

Received 05.05.2017; revised 21.09.2017; accepted 10.10.2017.
Author(s) address(es):
Ketevan Shavgulidze
I. Javakhishvili Tbilisi State University

University str. 13, 0186 Tbilisi, Georgia
E-mail: ketevan.shavgulidze@tsu.ge

