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BOUNDARY VALUE PROBLEMS OF THE THEORY OF ELASTICITY OF
POROUS COSSERAT MEDIA FOR SOLIDS WITH TRIPLE-POROSITY *

Bakur Gulua Roman Janjgava

Abstract. The purpose of this paper is to consider the two-dimensional version of the linear
theory of elasticity for solids with triple-porosity in the case of an elastic Cosserat medium.
Using the analytic functions of a complex variable and solutions of the Helmholtz equation
basic boundary value problems are solved explicitly for the circle.
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1 The plane deformation. Basic equations. In this paper we consider the
two-dimensional version of the linear theory of elasticity for solids with triple-porosity in
the case of an elastic Cosserat medium [1-4].

Let D be a a circle with the radius R. Let us assume that the domain D is filled
with an isotropic material with triple-porosity [5, 6]. The basic homogeneous system
of equations in the full coupled linear equilibrium theory of elasticity for materials with
double porosity can be written as follows

aao-ocﬁ = 07 aa,uoﬁ + (012 - 021) = 07 (O[, ﬂ = 17 2) (1)
Oaa = _ﬂzpz + A0 + 2/'Laauaa O12 = (,LL + a)aIUQ + (N - a)82ul — 20w,
001 = (4 @)Oouy + (0 — @)Orug + 20w,  paz = (¥ + 8)0aw, 0 := Oyuy + Oaus,

where 0,43 are stress tensor components, p,3 are moment stress tensor components, u,
are components of the displacement vector, p; (i = 1,2,3) are the pressures in the fluid
phase, A\ and p are the Lamé parameters, o, 3, p are the constants characterizing the
microstructure of the considered elastic medium, §; (i = 1,2,3) are the effective stress

parameters. In the stationary case, the values p = (p1,ps,p3)? satisfy the following
equation
bl/al —a12/a1 —a13/a1
Ap — Ap = O, A = —agl/a,g bg/ag —a23/a2 (3)

—6131/CL3 —a32/a3 53/a3

where a; = % (for the fluid phase, each phase i carries its respectively permeability k;, p/
is fluid viscosity), a;; is the fluid transfer rate between phase ¢ and phase j, A is the 2D
Laplace operator, by = a2 + a3, by = a91 + as3, by = az1 + ass.
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On the plane z122, we introduce the complex variable z = 2y + ixzy = €%, (i? = —1)
and the operators 9, = 0.5(0; — i0s), 05 = 0.5(0, + 101), Z = w1 — ixe, and A = 40,0;.

If relations (2) are substituted into system (1), then system (1) is written in the
complex form

2(p 4+ @)0:0,uy + (A + p— @)050 — 20¢i0sw — O5(B1p1 + Bapa + Psps) = 0,

(4)
2w+ 8)0:0w + «i(f — 205uy ) —2aw =0, (uyp = ug + ug).

2 The general solution of system (3)-(4). In this section, we construct the
analogues of the Kolosov-Muskhelishvili formulas [7] for system (4).
Equations (3) imply that

Di = f/(Z) + f/(Z) + lilxl(z, 2) + li2X2<Z, Z),

where f(z) is an arbitrary analytic functions of a complex variable z in the domain V" and
Xa(2z, Z) is an arbitrary solution of the Helmholtz equation Ay, (z,2) — KaXa(z,2) = 0,
Kq are eigenvalues and (Iy1, lo1, l31), (l12, l22, [32) are eigenvectors of the matrix A.

Theorem 1. The general solution of the system of equations (4) is represented as follows:

2pus = kp(2) — 2¢/(2) — (2) + 67(f'(2) + f'(2)) + ek Oz[01x1(7, 2) + d2xa(2, 2)],

A4 2p
2 1
20 = =ox(0) = il () + TR))
where kK = ’\/\i—glf, 0 = “(B%%:@, 0q 1= l}i—zﬁl + lj—:&%— f—zﬁg, ©(z) and Y (z) are arbitrary

analytic functions of a complex variable z in the domain V', x(z, Z) is an arbitrary solution
of the Helmholtz equation 40.0:x(z,2) — £2x(2,2) =0, &% := % > 0.

3 A problem for a circle. In this section, we solve a concrete boundary value
problem for a circle of radius R (Figure 1). On the boundary of the considered domain
the values of pressures p; and ps and the displacement vector are given.

o We consider the following problem

—
v —
I

+oo . _ .
pj‘T=R = PJ = Z Anjemﬂﬁ Anj = A*nj? J=13, (5)

E
C - -
: 2uty |r—g = 2u(G1 +iGy) = > Bpe™’,
L e (6)

+w . —
2,uw|r:R = G3 = Z Cnezm?’ Cn = C,n.

n=—oo

B

Figure 1: The circle
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The analytic function f(z) and the metaharmonic functions x,(z, Z) is represented as

a series
—+o0

f(Z) = Zane s Xa 2, Z Zana n nga

n=1

where I,,(-) is a modified Bessel function of n-th order, and are substituted in the boundary
conditions (5) we have

+oo
Z nR" ! (anei(nfl)ﬂ + C—lnefi(nfl)ﬁ)

n=1

+o0
+Z[lj1an1]n(k1 )+ Lisaa L, (ko R e ZAnj

Compare the coefficients at identical degrees. We obtain the following systems of equations
a1 + ay + L lo(kiR)aor + Liolo(kaR) e = Ao, j=1,2,3, )
nR"a, + Linlh—1(kiR)ay—11 + ljodp1(koR)oty—12 = Ap_1j, n > 1.

From (7) we can find a; + a1, a,, an1, Qno
Now the analytic functions ¢(z), 1¥(z) and the metaharmonic functions x(z, z) are
represented as the series

[e%s) [e'e) “+oo
= Z bnzn7 ¢(Z) = chzn’ X<Z7 2) = Zﬁn[n(gr)ezmg
n=1 n=0 —00

and are substituted in the boundary conditions (6) we have

o0 o

> (kby + 6" R*e™ — (by — 8"a1) R’ = " (n+ 2)(bpya — 8" yn) R 2
n=1 n:E)’_
_ Z Rnéne—inﬁ + Ci Zﬁn—ljn(CR)emﬂ _ ZAlnemﬂ,

—0o0

V—Fﬁ Z/Bn CR o KJ—{— ! ZR n—l—le n—i—le_”“9 ZO

where A}, = B, — i [* (k1 R) + 521, (k2 R)] .

Compare the coefﬁments at identical degrees. We obtain

R(I{,bl — Bl) + CZIl(CR)/BO = Alll, R(Kgl — b1> — Qh(CR)ﬁo == AII/,

K41 2u
by — b
iR(by —by) + v

kR0, +i(l,(CR)Bn1 = A, — 0" R"a,,

Iy(CR)Bo = Coy, (AT = Al —0"R(a1 + a1)),
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2u k+1. _1
_— _ 1 — n b = _
V“—B n I(CR)/BTL 1 ZTLR n n—1, (8)

(n 4+ 2)R"™ b,y + Cifpn1l,(CR) + R"¢, = (n+ 2)6*R" a0 — A, n>0.

From (8) we can find coefficients b, ¢,, [,.

It is easy to prove the absolute and uniform convergence of the series obtained in the
circle (including the contours) when the functions set on the boundaries have sufficient
smoothness.

Similarly the problem can be solved when on the boundary of the considered domain
the values of stresses are given.
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