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BOUNDARY VALUE PROBLEMS OF THE THEORY OF ELASTICITY OF
POROUS COSSERAT MEDIA FOR SOLIDS WITH TRIPLE-POROSITY ?

Bakur Gulua Roman Janjgava

Abstract. The purpose of this paper is to consider the two-dimensional version of the linear

theory of elasticity for solids with triple-porosity in the case of an elastic Cosserat medium.

Using the analytic functions of a complex variable and solutions of the Helmholtz equation

basic boundary value problems are solved explicitly for the circle.
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1 The plane deformation. Basic equations. In this paper we consider the
two-dimensional version of the linear theory of elasticity for solids with triple-porosity in
the case of an elastic Cosserat medium [1-4].

Let D be a a circle with the radius R. Let us assume that the domain D is filled
with an isotropic material with triple-porosity [5, 6]. The basic homogeneous system
of equations in the full coupled linear equilibrium theory of elasticity for materials with
double porosity can be written as follows

∂ασαβ = 0, ∂αµα3 + (σ12 − σ21) = 0, (α, β = 1, 2) (1)

σαα = −βipi + λθ + 2µ∂αuα, σ12 = (µ+ α)∂1u2 + (µ− α)∂2u1 − 2αω,

σ21 = (µ+ α)∂2u1 + (µ− α)∂1u2 + 2αω, µα3 = (ν + β)∂αω, θ := ∂1u1 + ∂2u2,
(2)

where σαβ are stress tensor components, µα3 are moment stress tensor components, uα
are components of the displacement vector, pi (i = 1, 2, 3) are the pressures in the fluid
phase, λ and µ are the Lamé parameters, α, β, µ are the constants characterizing the
microstructure of the considered elastic medium, βi (i = 1, 2, 3) are the effective stress
parameters. In the stationary case, the values p = (p1, p2, p3)T satisfy the following
equation

∆p− Ap = 0, A =

 b1/a1 −a12/a1 −a13/a1

−a21/a2 b2/a2 −a23/a2

−a31/a3 −a32/a3 b3/a3

 (3)

where ai = ki
µ′

(for the fluid phase, each phase i carries its respectively permeability ki, µ
′

is fluid viscosity), aij is the fluid transfer rate between phase i and phase j, ∆ is the 2D
Laplace operator, b1 = a12 + a13, b2 = a21 + a23, b3 = a31 + a32.
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On the plane x1x2, we introduce the complex variable z = x1 + ix2 = reiϑ, (i2 = −1)
and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.

If relations (2) are substituted into system (1), then system (1) is written in the
complex form

2(µ+ α)∂z̄∂zu+ + (λ+ µ− α)∂z̄θ − 2αi∂z̄ω − ∂z̄(β1p1 + β2p2 + β3p3) = 0,

2(ν + β)∂z̄∂zω + αi(θ − 2∂z̄u+)− 2αω = 0, (u+ = u1 + iu2).
(4)

2 The general solution of system (3)-(4). In this section, we construct the
analogues of the Kolosov-Muskhelishvili formulas [7] for system (4).

Equations (3) imply that

pi = f ′(z) + f ′(z) + li1χ1(z, z̄) + li2χ2(z, z̄),

where f(z) is an arbitrary analytic functions of a complex variable z in the domain V and
χα(z, z̄) is an arbitrary solution of the Helmholtz equation ∆χα(z, z̄) − καχα(z, z̄) = 0,
κα are eigenvalues and (l11, l21, l31), (l12, l22, l32) are eigenvectors of the matrix A.

Theorem 1. The general solution of the system of equations (4) is represented as follows:

2µu+ = κϕ(z)− zϕ′(z)− ψ(z) + δ∗(f ′(z) + f ′(z)) +
4µ

λ+ 2µ
∂z̄[δ1χ1(z, z̄) + δ2χ2(z, z̄)],

2µω =
2µ

ν + β
χ(z, z̄)− κ+ 1

2
i(ϕ′(z) + ϕ′(z)),

where κ = λ+3µ
λ+µ

, δ∗ = µ(β1+β2+β3)
λ+2µ

, δα := l1α
κα
β1 + l2α

κα
β2 + l3α

κα
β3, ϕ(z) and ψ(z) are arbitrary

analytic functions of a complex variable z in the domain V , χ(z, z̄) is an arbitrary solution
of the Helmholtz equation 4∂z∂z̄χ(z, z̄)− ξ2χ(z, z̄) = 0, ξ2 := 2µα

(ν+β)(µ+α)
> 0.

3 A problem for a circle. In this section, we solve a concrete boundary value
problem for a circle of radius R (Figure 1). On the boundary of the considered domain
the values of pressures p1 and p2 and the displacement vector are given.

Figure 1: The circle

We consider the following problem

pj|r=R = Pj =
+∞∑
−∞

Anje
inϑ, Anj = A−nj, j = 1, 3, (5)

2µu+|r=R = 2µ(G1 + iG2) =
+∞∑

n=−∞
Bne

inϑ,

2µω|r=R = G3 =
+∞∑

n=−∞
Cne

inϑ, Cn = C−n.
(6)
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The analytic function f(z) and the metaharmonic functions χα(z, z̄) is represented as
a series

f(z) =
+∞∑
n=1

ane
inϑ, χα(z, z̄) =

+∞∑
−∞

αnαIn(kαr)e
inϑ,

where In(·) is a modified Bessel function of n-th order, and are substituted in the boundary
conditions (5) we have

+∞∑
n=1

nRn−1
(
ane

i(n−1)ϑ + āne
−i(n−1)ϑ

)
+

+∞∑
−∞

[lj1αn1In(k1R) + lj2αn2In(k2R)]einϑ =
+∞∑
−∞

Anje
inϑ.

Compare the coefficients at identical degrees. We obtain the following systems of equations

a1 + ā1 + lj1I0(k1R)α01 + lj2I0(k2R)α02 = A0j, j = 1, 2, 3,

nRn−1an + lj1In−1(k1R)αn−1 1 + lj2In−1(k2R)αn−1 2 = An−1j, n > 1.
(7)

From (7) we can find a1 + ā1, an, αn1, αn2

Now the analytic functions ϕ(z), ψ(z) and the metaharmonic functions χ(z, z̄) are
represented as the series

ϕ(z) =
∞∑
n=1

bnz
n, ψ(z) =

∞∑
n=0

cnz
n, χ(z, z̄) =

+∞∑
−∞

βnIn(ζr)einϑ

and are substituted in the boundary conditions (6) we have

∞∑
n=1

(κbn + δ∗)Rneinϑ − (b̄1 − δ∗ā1)Reiϑ −
∞∑
n=0

(n+ 2)(b̄n+2 − δ∗ān+2)Rn+2e−inϑ

−
∞∑
n=0

Rnc̄ne
−inϑ + ζi

∞∑
−∞

βn−1In(ζR)einϑ =
+∞∑
−∞

A′ne
inϑ,

2µ

ν + β

∞∑
−∞

βnIn(ζR)einϑ − κ+ 1

2
i

∞∑
n=0

Rn[bn+1e
inϑ − b̄n+1e

−inϑ] =
+∞∑
−∞

Cne
inϑ,

where A′n = Bn − 4µ
λ+2µ

[
k1δ1

2
In(k1R) + k2δ2

2
In(k2R)

]
.

Compare the coefficients at identical degrees. We obtain

R(κb1 − b̄1) + ζiI1(ζR)β0 = A′′1, R(κb̄1 − b1)− ζiI1(ζR)β0 = Ā′′1,

−κ+ 1

2
iR(b1 − b̄1) +

2µ

ν + β
I0(ζR)β0 = C0, (A′′1 = A′1 − δ∗R(a1 + ā1)) ,

κRnbn + iζIn(ζR)βn−1 = A′n − δ∗Rnan,
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2µ

ν + β
In−1(ζR)βn−1 −

κ+ 1

2
inRn−1bn = Cn−1, (8)

(n+ 2)Rn+2bn+2 + ζiβn−1In(ζR) +Rncn = (n+ 2)δ∗Rn+2an+2 − Ā′−n, n ≥ 0.

From (8) we can find coefficients bn, cn, βn.
It is easy to prove the absolute and uniform convergence of the series obtained in the

circle (including the contours) when the functions set on the boundaries have sufficient
smoothness.

Similarly the problem can be solved when on the boundary of the considered domain
the values of stresses are given.
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