Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 28, 2014

ON THE ABSOLUTE CONVERGENCE OF MULTIPLE FOURIER–HAAR SERIES

Gogoladze L., Tsagareishvili V.

Abstract. The analogues of Szasz's theorem for s-dimensional Fourier–Haar series is given. It is shown that this theorem when $\alpha = 1$ is best possible for general complete orthonormal systems.

Keywords and phrases: Multiple series, Haar systems, absolute convergence.

AMS subject classification: 42A20.

Let R^s , $s \ge 1$, be the Euclidean space and let N^s be the set of lattice points in R^s . We denote by $X = (x_1, \ldots, x_s)$, $Y = (y_1, \ldots, y_s)$ the points of the space R^s and by $M = (m_1, \ldots, m_s)$, $T = (t_1, \ldots, t_s)$ the points of the set N^s . If B is an arbitrary nonempty subset of the set $\{1, \ldots, s\} = \overline{S}$, then we denote by X_B the points (x'_1, \ldots, x'_s) where $x'_i = x_i$ for $i \in B$ and $x'_i = 0$ for $i \in \overline{S} \setminus B$. We will use the following notation: Π_s is the set of all nonempty subsets of the set \overline{S} ; |B| is the number of elements of the set B; $E = (1, \ldots, 1)$; $I^s = [0, 1]^s$; $C(I^s)$ is the space of continuous functions; $||f||_{C(I^s)}$ is the norm of f in the space $C(I^s)$.

Let $f \in C(I^s)$. We set

$$\Delta_{H_{\{i\}}} f(x) = f(X + H_{\{i\}}) - f(X)$$

and define $\Delta_{H_B} f(x)$ to be repeated applications of the operation $H_{\{i\}}$ when *i* runs over the set $B \subset \overline{S}$.

Let $r_n(x)$ and $\chi_n(x)$ be, respectively, the Rademacher and Haar functions (see [1], Ch. 1, Sections 6, 7).

Now let us define the Rademacher multiple functions as

$$r_N(X) = \prod_{i=1}^s r_{n_i}(x_i)$$

and the Haar multiple functions as

$$\chi_N(X) = \prod_{i=1}^s \chi_{n_i}(x_i).$$

Definition 1. Denote by $H_{\alpha}^{(s)}$ the set of all functions continuous on I^s , for which

$$\sup_{|t_{i_j}| \le |h_{i_j}|} \|\Delta_{T_B} f(x)\|_{C(I^s)} = O\Big(\prod_{i_j \in B} |h_{i_j}|^{\alpha}\Big)$$

for any $B = \{i_1, \dots, i_{|B|}\} \in \Pi_s$.

Definition 2. Denote by Lip α , $\alpha \in (0, 1]$, the set of all functions continuous on I^s , for which

$$\sup_{\substack{l_i|\leq |h_i|\\1\leq i\leq s}} \|f(X+T) - f(X)\|_{C(I^s)} = O(|H|^{\alpha}),$$

where $|H| = (h_1^2 + \dots + h_s^2)^{\frac{1}{2}}$.

The following lemma holds true

Į,

Lemma. If $f(X) \in \operatorname{Lip} \alpha$, $\alpha \in (0, 1]$, then $f(X) \in H^{(s)}_{\underline{\alpha}}$.

The following theorem is a multidimensional analogue of the corresponding theorem in [2] (see Ch. 7, Section 4).

Theorem 1. Let $(f_N(X))$ be a sequence of functions such that $||f_N||_{C(I^s)} < C$ (C does not depend on N). Then if

$$\sum_{N=E}^{\infty} a_N^2 < +\infty,$$

the function

$$f(X,T) = \sum_{N=E}^{\infty} a_N f_N(X) r_n(X)$$

belongs to $L_p(I^s)$ for almost every $T \in I^s$.

The following theorem for s = 1 was proved by B.I. Golubov [3].

Theorem 2. Let $f \in H^{(s)}_{\frac{\beta}{s}}$ for every $\beta \in (0, \alpha)$, $\alpha \in (0, 1]$. Then for any $\varepsilon > 0$

$$\sum_{N=E}^{\infty} |\widehat{\chi}_N(f)|^{\frac{2s}{s+2\alpha}+\varepsilon} < +\infty.$$

Theorem 3. Let p > 2 and let $(\varphi_N(X))$ be any complete orthonormal system (ONS) in $L_2(I^s)$. Then there exists a function f(X) such that $f'_{x_i} \in L_p(I^s)$, $i = 1, \ldots, s$, and

$$\sum_{N=E}^{\infty} |\widehat{\varphi}_N(f)|^{\frac{2s}{s+2}} = +\infty.$$

This theorem is the s-dimensional analogue of Szasz's [4] theorem for the Haar series.

The following theorem shows that Theorem 2 is best possible when $\alpha = 1$.

Theorem 4. Let $(\varphi_N(X))$ be any complete ONS in $L_2(I^s)$. Then there exists a function $f(X) \in \text{Lip } \alpha$ for every $\alpha \in (0, 1)$ such that

$$\sum_{N=E}^{\infty} |\widehat{\varphi}_N(f)|^{\frac{2s}{s+2}} = +\infty.$$

In the special case $\varphi_N(X) = \chi_n(X)$ Theorem 4 was proved by B.I. Golubov [3].

REFERENCES

1. Alexits G. Convergence Problems of Orthogonal Series. International Series of Monographs in Pure and Applied Mathematics, 20, Pergamon Press, New York-Oxford-Paris, 1961. Russian translation: Izdat. Inostran. Lit., Moscow, 1963.

2. Kačmaž S., Šteĭngauz G. Theorie der Orthogonalreihen. Monografje Matematyczne, VI, Warsaw, 1935. Russian translarion: Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958.

3. Golubov B. I. On Fourier series of continuous functions with respect to a Haar system. (Russian) *Izv. Akad. Nauk SSSR Ser. Mat.*, **28**, (1964), 1271-1296.

4. Szasz O. Ueber den Konvergenzexponent der Forierschen Reihen, Münch. *Sitzungsber.* (1922), 135-150.

Received 12.05.2014; revised 22.10.2014; accepted 27.12.2014.

Authors' address:

L. Gogoladze, V. Tsagareishvili Iv. Javakhishvili Tbilisi State University 6, Tamarashvili St., Tbilisi 0177 Georgia E-mail: lgogoladze1@hotmail.com, cagare@ymail.com