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ON ASYMPTOTIC BEHAVIOR OF SOLUTION OF ONE NONLINEAR
ONE-DIMENSIONAL INTEGRO-DIFFERENTIAL ANALOGUE OF MAXWELL’S

SYSTEM
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Abstract. Large time behavior of solutions of a system of nonlinear integro-differential
equations associated with the penetration of a magnetic field into a substance is studied.
Initial-boundary value problem with Dirichlet boundary conditions is considered. Exponential
stabilization of solution is established. Corresponding finite difference scheme is considered
as well.
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A great variety of applied problems are modeled by the systems of nonlinear integro-
differential equations. Such systems arise for instance for mathematical modeling of
the process of penetrating of magnetic field in the substance. Corresponding Maxwell’s
system [1] can be rewritten in the following form [2]:

∂H

∂t
= −rot


a




t∫

0

|rotH|2 dτ


 rotH


 , (1)

where H = (H1, H2, H3) is a vector of the magnetic field and function a = a(S) is
defined for S ∈ [0,∞).

If the magnetic field has the form H = (0, U, V ) and U = U(x, t), V = V (x, t), then
we obtain the following system of nonlinear integro-differential equations:

∂U

∂t
=

∂

∂x


a
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t∫

0

[(
∂U

∂x
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)2
]
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 ∂U

∂x


 ,

∂V
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=

∂

∂x
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a



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0

[(
∂U

∂x

)2
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(
∂V

∂x

)2
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dτ


 ∂V

∂x


 .

(2)

Many scientific works are devoted to uniqueness and solvability of various problems
for (2) type models (see, for example, [2]-[8] and references therein). The existence
of the global solutions for initial-boundary value problems of such models have been
proved in [2]-[5],[8] by using the modified Galerkin and compactness methods [9],[10].
For solvability and uniqueness properties of such type models see also [6],[7] and number
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of other works as well. In [6] some generalization of equations of type (1) is proposed.
In this case analogous of the model type (2) has the following form:

∂U

∂t
= a




t∫

0

1∫

0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]

dxdτ


 ∂2U

∂x2
,

∂V

∂t
= a




t∫

0

1∫

0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]

dxdτ


 ∂2V

∂x2
.

(3)

The asymptotic behavior of the solutions of (2) and (3) type models have been
object of intensive research (see, for example, [8],[11]-[19]).

The purpose of this note is to study the asymptotic behavior of solutions of the
initial-boundary value problem for the system (3) in the case a(S) = 1 + S and confir-
mation of theoretical results by numerical experiments.

In the domain [0, 1]× [0, ∞) for the system (3) with a(S) = 1 + S let us consider
the following initial-boundary value problem:

∂U

∂t
=



1 +

t∫

0

1∫

0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]

dxdτ





∂2U

∂x2
,

∂V

∂t
=



1 +

t∫

0

1∫

0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]

dxdτ





∂2V

∂x2
,

(4)

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2, (5)

U(x, 0) = U0(x), V (x, 0) = V0(x), (6)

where ψ1 = Const ≥ 0, ψ2 = Const ≥ 0; U0 = U0(x) and V0 = V0(x) are given
functions.

The existence and uniqueness of the solution of such type problems for one equation
in suitable classes are proved in [8]. One must note that asymptotic behavior of solution
for problem (4)-(6) with homogeneous as well as non-homogenous boundary conditions
is studied in [17]. For problem with homogeneous boundary condition exponential
stabilization while for problem with nonhomogeneous boundary condition on one side
of lateral boundary power-like stabilization is obtained.

We use usual Sobolev spaces Hk(0, 1) and Hk
0 (0, 1).

Theorem 1. If U0, V0 ∈ H1
0 (0, 1), then for the solution of problem (4)-(6) the

following estimate is true

‖U‖+

∥∥∥∥
∂U

∂x

∥∥∥∥ + ‖V ‖+

∥∥∥∥
∂V

∂x

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Note that here and below C denotes positive constants independent of t and ‖ · ‖
denotes norm in the space L2(0, 1).

Note that Theorem 1 gives exponential stabilization of the solution of the problem
(4)-(6) in the norm of the space H1(0, 1). The stabilization is also achieved in the norm
of the space C1(0, 1). In particular, the following statement takes place.
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Theorem 2. If U0, V0 ∈ H3(0, 1)∩H1
0 (0, 1), then for the solution of problem (4)-(6)

the following relations hold:

∣∣∣∣
∂U(x, t)

∂x

∣∣∣∣ ≤ C exp

(
−αt

2

)
,

∣∣∣∣
∂V (x, t)

∂x

∣∣∣∣ ≤ C exp

(
−αt

2

)
,

∣∣∣∣
∂U(x, t)

∂t

∣∣∣∣ ≤ C exp

(
−βt

2

)
,

∣∣∣∣
∂V (x, t)

∂t

∣∣∣∣ ≤ C exp

(
−βt

2

)
,

where 0 < α = Const < 1, 0 < β = Const < α.
Following lemma is necessary to prove Theorem 2.
Lemma 1. For the solution of problem (4)-(6) the following estimate is true

∥∥∥∥
∂U(x, t)

∂t

∥∥∥∥ +

∥∥∥∥
∂V (x, t)

∂t

∥∥∥∥ ≤ C exp

(
− t

2

)
.

In the rectangle [0, 1]× [0, T ], where T is a positive constant, we consider problem
(4)-(6). We assume that U0 = U0(x) and V0 = V0(x) are sufficiently smooth given
functions of their arguments.

Using usual notations [20] we correspond to the problem (4)-(6) the difference
scheme:

uj+1
i − uj

i

τ
=

{
1 + τh

M∑

l=1

j+1∑

k=1

[
(uk

x̄, l)
2 + (vk

x̄, l)
2
]
}

uj+1
x̄x, i,

vj+1
i − vj

i

τ
=

{
1 + τh

M∑

l=1

j+1∑

k=1

[
(uk

x̄, l)
2 + (vk

x̄, l)
2
]
}

vj+1
x̄x, i,

i = 1, 2, ..., M − 1; j = 0, 1, ..., N − 1,

(7)

uj
0 = vj

0 = 0, uj
M = ψ1, vj

M = ψ2, j = 0, 1, ..., N, (8)

u0
i = U0,i, v0

i = V0,i i = 0, 1, ..., M. (9)

Many scientific works are devoted to the construction of descrete analogues for (2)
and (3) type models (see, for example, [14],[17],[18],[21],[22] and references therein).

It is not difficult to obtain for (7)-(9) the following estimation:

‖un‖2
h +

n∑
j=1

‖uj
x̄]|2hτ ≤ C, ‖vn‖2

h +
n∑

j=1

‖vj
x̄]|2hτ ≤ C, n = 1, 2, ..., N. (10)

The a-priori estimate (10) guarantees the stability of the scheme (7)-(9).
Theorem 3. If the problem (4)-(6) has a sufficiently smooth unique solution U =

U(x, t), V = V (x, t), then exists the unique solution uj = (uj
1, u

j
2, . . . , u

j
M−1), vj =

(vj
1, v

j
2, . . . , v

j
M−1), j = 1, 2, . . . , N of the finite difference scheme (7)-(9) which tends to

the U j = (U j
1 , U

j
2 , . . . , U

j
M−1), V j = (V j

1 , V j
2 , . . . , V j

M−1) for j = 1, 2, . . . , N as τ → 0,
h → 0 and the following estimates are true

‖uj − U j‖h ≤ C(τ + h), ‖vj − V j‖h ≤ C(τ + h), j = 1, 2, . . . , N.
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We now comment on the numerical implementation of the discrete problem (7)-(9).
Note that (7) can be rewritten as:

uj+1
i − uj

i

τ
− Aj+1uj+1

i+1 − 2uj+1
i + uj+1

i−1

h2
= 0,

vj+1
i − vj

i

τ
− Aj+1vj+1

i+1 − 2vj+1
i + vj+1

i−1

h2
= 0,

i = 1, 2, ..., M − 1, j = 0, 1, ..., N − 1,

where

Aj = 1 + τh

M∑

`=1

j∑

k=1

[(
uk

` − uk
`−1

h

)2

+

(
vk

` − vk
`−1

h

)2
]

.

In order to rewrite this in matrix form, we define the vectors uj =
[
uj

1, uj
2, . . . , uj

M−1

]T

and similarly vj. We also define the symmetric tridiagonal (M − 1)× (M − 1) matrix
T as follows

Tj+1
rs =





− 1

h2
Aj+1, s = r − 1,

2

h2
Aj+1, s = r,

− 1

h2
Aj+1, s = r + 1,

0, otherwise.

Thus the system (7) becomes

1

τ




uj+1

vj+1


− 1

τ




uj

vj


 +




Tj+1 0

0 Tj+1







uj+1

vj+1


 = 0. (11)

We use Newton’s method to solve the nonlinear system (11). Let Pj = [uj, vj]
T

and define

H(Pj+1) =
1

τ
Pj+1 − 1

τ
Pj + T̂j+1Pj+1, (12)

where T̂j+1 is the 2 by 2 block diagonal matrix with Tj+1 on diagonal. Newton’s
method for the system (12) is given by

∇H
(
Pj+1

) ∣∣∣∣
(n)

(
Pj+1

∣∣∣∣
(n+1)

−Pj+1

∣∣∣∣
(n)

)
= −H

(
Pj+1

) ∣∣∣∣
(n)

.

It is well known that if Hi are three times continuously differentiable in a region
containing the solution and the Jacobian does not vanish in that region, then Newton’s
method converges at least quadratically (see, for example, [23]). In our case the Jaco-

bian is the matrix ∇H in which the term
1

τ
on diagonal ensures that it doesn’t vanish.

The differentiability is guaranteed, since ∇H is quadratic. So, we obtain convergence
of the considered iterative method.
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