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Abstract. We consider the mean-variance hedging problem under partial information in the
case where the flow of observable events does not contain the full information on the under-
lying asset price process. We introduce a certain type martingale equation and characterize
the optimal strategy in terms of the solution of this equation.
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We consider the mean-variance hedging problem under partial information, where
the flow of observable events does not necessarily contain the full information on the
underlying asset prices.

Assume that the dynamics of the price process of the asset traded on a market
is described by a continuous semimartingale S = (St, t ∈ [0, T ]) defined on a filtered
probability space (Ω, F,F = (Ft, t ∈ [0, T ], P ), satisfying the usual conditions, where
F = FT and T <∞ is the fixed time horizon. Suppose that the interest rate is equal
to zero and the asset price process admits the decomposition

St = S0 +Mt +

∫ t

0

λud〈M〉u, 〈λ ·M〉T <∞ a.s., (1)

where M is a local martingale and λ is an F -predictable process.
Let us introduce an additional filtration G such that Gt ⊆ Ft, for every t ∈ [0,T].

The filtration G represents the information that the hedger has at his disposal.
Let H be a square integrable FT -measurable random variable, representing the

payoff of a contingent claim at time T .
We consider the mean-variance hedging problem

to minimize E[(Xx,π
T − H)2] over all π ∈ Π(G), (2)

where Π(G) is a class of G-predictable S-integrable processes. Here Xx,π
t = x+

∫ t
0
πudSu

is the wealth process starting from initial capital x, determined by the self-financing
trading strategy π ∈ Π(G).

In the case G = F of complete information the mean-variance hedging problem
was introduced by Föllmer and Sondermann [1986] in the case when S is a martingale
and then developed by several authors for price process admitting a trend. The mean-
variance hedging problem under partial information was first studied by Di Masi, Platen
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and Runggaldier (1995) when the stock price process is a martingale and the prices
are observed only at discrete time moments. For a general filtration and when the
asset price process is a martingale this problem was solved by Schweizer (1994). Pham
(2001) considered the mean-variance hedging problem for a general semimartingale
model, assuming that FSt ⊆ Gt, where FS is the filtration generated by S. We focus
our attention to the case when the filtration G of observable events does not contain the
full information about the asset price process S. In this case S is not a G-semimartingale
in general and the problem is more involved.

Let X∗ = X0,π∗ be the wealth process corresponding to the optimal strategy π∗.
Let

Ht = E(H|Ft) = EH +

∫ t

0

hudMu +Nt (3)

be the Galtchouk-Kunita-Watanabe (GKW) decomposition of Ht, where N is a mar-
tingale orthogonal to M and h is F -predictable M -integrable process.

Denote by Π(G) the class of all G-predictable processes π such that π · S is in the
S2 space of semimartingales.

Denote by Ŷ and pY the G- optional and G - predictable projections of the process
Y .

Proposition 1. Assume that 〈M〉 is G-adapted. If π∗ ∈ Π(G) is the optimal
strategy of the problem (2) then d〈M〉tdP -a.e.

π∗t =p (ht + ψt + λtHt + λtYt − λtX∗t ) (4)

where the triple (Y, ψ, L), 〈L,M〉 = 0 is a solution of BSDE

dYt = π∗t λtd〈M〉t + ψtdMt + dLt, YT = 0. (5)

Proof. The variational principle gives that E(H−XT (π∗))XT (π) = 0, ∀π ∈ Π(G).

Since π∗ ∈ Π(G) we have that E
( ∫ T

0
π∗uλud〈M〉u

)2
< ∞ and by the GKW decom-

position

−
∫ T

0

π∗uλud〈M〉u = c+

∫ T

0

ψudMu + Lu, 〈M,N〉 = 0, (6)

where ψ ·M and L are square integrable martingales. Using the martingale property,
it follows from (6) that the triple (Y, ψ, L), where Yt = E

( ∫ T
t
π∗uλud〈M〉u|Ft) and ψ,L

are defined by (6), satisfies the BSDE

Yt = Y0 +

∫ t

0

π∗uλud〈M〉u +

∫ t

0

ψudMu + Lt, YT = 0. (7)

Therefore (taking in mind decompositions (3), (6)) we have

E(H − XT (π∗))XT (π) = E

(
−
∫ T

0

π∗t λtd〈M〉t −
∫ T

0

π∗t dMt +H

)(∫ T

0

πtdSt

)

= E

(
Y0 +

∫ T

0

ψtdMt + LT −
∫ T

0

π∗t dMt +H

)(∫ T

0

πtdSt

)
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= E

(
Y0 + LT +

∫ T

0

(ψt − π∗t ) dMt +H

)(∫ T

0

πtλtd〈M〉t
)

(8)

+ E

(
Y0 + LT +

∫ T

0

(ψt − π∗t ) dMt + cH +

∫ T

0

htdMt +NT

)(∫ T

0

πtdMt

)
= 0. (9)

Using the formula of integration by parts in (8) and properties of mutual charac-
teristics of martingales in (9) we obtain the equality

E

∫ T

0

(
Y0 + Lt +

∫ t

0

(ψu − π∗u) dMt +Ht

)
πtλtd〈M〉t + E

∫ T

0

(ψt + ht − π∗t ) πtd〈M〉t = 0.

Inserting the solution Y of BSDE (7) in the latter equality gives

E

∫ T

0

(
Y0 +Ht + Yt −

∫ t

0

λuπ
∗
ud〈M〉u −

∫ t

0

π∗udMt

)
πtλtd〈M〉t+E

∫ T

0

(ψt + ht − π∗t )πtd〈M〉t

= E

∫ T

0

(
(Ht + Yt −X∗t )λt + ψt + ht − π∗t

)
πtd〈M〉t = 0.

It follows from the latter equality that

E

∫ T

0

πtπ
∗
t d〈M〉t = E

∫ T

0

πt[ht + ψt + λtHt + λtYt − λtX∗t ]〈M〉t

and by arbitrariness of π ∈ Π(G) we obtain (4). �
The forward-backward equation (4)-(5),which gives a necessary condition of opti-

mality, is hard to solve and to give the solution of the problem in a more constructive
form we require the following additional assumptions:

A) 〈M〉 and λ are G-predictable,
B) any G- martingale is an F -local martingale,
D) there exists a martingale measure for S that satisfies the Reverse Hölder condi-

tion.

E) ρ2
t ≡

d〈M̂〉t
d〈M〉t < 1 for all t ∈ [0, T ].

By condition A) mt =
∫ t

0
ψsdMs + Lt is G-martingale. If we use the GKW decom-

position of m with respect to M̂

mt =

∫ t

0

ψ̃udM̂u + L̃t, 〈M̂, L̃〉 = 0,

then ψ̂t = ρ2
t ψ̃t. Besides, conditions A), B) imply that X̂t(π

∗) =
∫ t

0
π∗sλsd〈M〉s +∫ t

0
π∗sdM̂s. Therefore, from (4) and (5) we obtain the Forward-Backward equation for

the filtered processes

dX̂∗t =
(
pht + ρ2

t ψ̃t + λt(Ĥt + Ŷt − X̂∗t )
)
dŜt, X̂∗0 = x (10)

dŶt = λt

(
pht + ρ2

t ψ̃t + λt(Ĥt + Ŷt − X̂∗t )
)
d〈M〉t + ψ̃tdM̂t + dL̃t, ŶT = 0. (11)
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Let us introduce the operator (AY )t = E(
∫ T

0
1

1−ρ2
u
[Yuλu + ρ2

uψ̃u](λud〈M〉u + dM̂u)|Gt)
defined for any M2(G, P ). We shall use the following notations;

h̃t =pht − d〈M̂, Ĥ〉t
d〈M〉t , H̃ = ĤT −

∫ T

0

h̃t
1− ρ2

u

dŜt

Let us consider equation

ỸT = H̃ −
∫ T

0

1

1− ρ2
t

[
λtỸt + ρ2

t ψ̃t

] (
λtd〈M〉t + dM̂t

)
. (12)

Theorem 1. Let EH̃2 < ∞. Then equation (12) admits a unique solution Ỹ ∈
M2(G, P ) satisfying E|ỸT |2 ≤ E|H̃|2. If conditions A), B), D) and E) are satisfied,
then the strategy π∗ is optimal if and only if it admits the representation

π∗t =
1

1− ρ2
t

(
h̃t + λtỸt + ρ2

t ψ̃t

)
. (13)

Proof. To prove the first part of the theorem, we need only to show that A is a
non-negative operator. Indeed, for Yt = c+

∫ t
0
ϕsdM̂s + Lt, 〈M̂, L〉 = 0 we have

(Y,AY ) = E

(
YT

∫ T

0

1

1− ρ2
t

Ytλ
2
td〈M〉t + YT

∫ T

0

1

1− ρ2
t

YtλtdM̂t

+YT

∫ T

0

ρ2
t

1− ρ2
t

ϕtλtd〈M〉t + YT

∫ T

0

ρ2
t

1− ρ2
t

ϕtdM̂t

)

Since 〈Y, M̂〉t =
∫ t

0
ϕuρ

2
ud〈M〉u and EYT

∫ T
0
gud〈M〉u = E

∫ T
0
Yugud〈M〉u for any G-

predictable process g, we obtain that

(Y,AY ) = E

(∫ T

0

1

1− ρ2
t

Y 2
t λ

2
td〈M〉t +

∫ T

0

1

1− ρ2
t

Ytλtϕtd〈M̂〉t +

∫ T

0

ρ2
t

1− ρ2
t

Ytϕtλtd〈M〉t

+

∫ T

0

ρ2
t

1− ρ2
t

ϕ2
td〈M̂〉t

)
= E

(∫ T

0

1

1− ρ2
t

Y 2
t λ

2
td〈M〉t +

∫ T

0

ρ2
t

1− ρ2
t

Ytλtϕtd〈M〉t

+

∫ T

0

ρ2
t

1− ρ2
t

Ytϕtλtd〈M〉t +

∫ T

0

ρ4
t

1− ρ2
t

ϕ2
td〈M〉t

)
= E

∫ T

0

1

1− ρ2
t

(
Ytλt + ρ2

tϕt
)2
d〈M〉t ≥ 0.

Thus Y +AY is a strictly positive operator, (Id+A)−1 is bounded with the norm less

than one and Y = (Id+ A)−1H̃ is a unique solution of (12).
Here we shall only show that if π∗ is optimal, then it is of the form (13). Introducing

notations

Ỹt = Ŷt + Ĥt − X̂t(π
∗), m̃t = mt + Ĥt −

∫ t

0

π∗sdM̂s

from (10)-(11) we have

π∗t = h̃t + ρ2
t ψ̃t + π∗t ρ

2
t + λtỸt, dỸt = dm̃t,
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which gives (since ρ2
t < 1 for all t) (13) and

ỸT = ĤT − X̂T (π∗).

Integrating (13) with respect to Ŝ and inserting obtained equality into (14) we receive

that the pair (Ỹ , ψ̃) satisfies equation (12), hence π∗ is of the form (13).
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