
Reports of Enlarged Session of the 
Seminar of I.Vekua Institute 
of Applied Mathematics 
Vol. 19, N1, 2004 

 
AN APPROXIMATE METHOD FOR A NONLINEAR BEAM EQUATION 

 
 Peradze J., Papukashvili N., Odisharia V.   

 
I.Javakhishvili Tbilisi State University,  

Department of Applied Mathematics and Computer Science 
 

Received in 24.06.04 
 

Abstract 
An approximate method is proposed for solving the initial boundary value problem for an integro-differential 
equation describing the behavior of a beam. The exactness of the proposed method is studied.  

 
Let us consider the nonlinear Kirchhoff-type equation 
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Here u(x,t) is the sought beam deflection function at the point x at the time moment t,  

l is the beam length, α and β are the given values, u(0)(x), u(1)(x) are the known functions, 
and  
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Remark 1. The second requirement in (4) can be replaced by  
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where ,0ii ≥     ,0>ε     ,0>= constc     0i  is some natural number.                       
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 Equation (1) was proposed by Woinowsky-Kriger [1] in 1950. Subsequently, the 
investigation of equations of type (1) and with the same kind of nonlinearity evoked 
interest on the part of various researchers (see, e.g., [2 – 4]), who were mainly concerned 
with questions of the existence of a solution. In [5], a numerical method of solving 
Timoshenko’s wave system, where nonlinearities are of the same kind as (1), is studied.  

As far as we know, the question of construction and substantiation of approximate 
algorithms for equation (1) has not been so far investigated.  

A solution of problem (1)-(3) will be sought in the form 
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The coefficients )(tuni  are defined by means of Galerkin’s method from the system of 

ordinary differential equations 
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  with the initial condition 
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Using these notations, system (5) and condition (6) can be rewritten as 
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Consider the vector functions  
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To solve problem (10), (11) we will use the difference method. On the time interval [0, 

T] we introduce the grid { mt | Tttt M =<<<= ...0 10 } with a variable pitch ,1−−= mmm ttτ  

.,...,2,1 Mm =  Approximate values of vectors (9) on the m-th  time layer, i.e., for ,mtt =  
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 They will be sought by using the modified 

Crank-Nicolson scheme  
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System (12),(13) will be solved layerwise by an iteration method. Assuming that 
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 For this, we use a Picard-type iteration method 
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In [6], the system of equations obtained by discretization of problem (1)-(3) is solved 

by means of Jacobi’s nonlinear iteration method and the exactness of this method is 
studied. 

Below we give the results of investigation of the solution exactness of systems 
(10),(11) and (12),(13).  

It is proved that there exists a strong solution of problem (1)-(3), which is expanded 
into a series  
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where the coefficients )(tui  satisfy an infinite system of equations 
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Theorem 1: For an error of Galerkin’s method, the following estimate is valid    
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the approximation error is 
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where 2C  is a positive value not depending on m, n and grid pitches.  
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