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Abstract
An approximate method is proposed for solving the initial boundary value problem for an integro-differential
equation describing the behavior of a beam. The exactness of the proposed method is studied.

Let us consider the nonlinear Kirchhoff-type equation
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O<x<lI, 0<t<T,
with the conditions
u(O,t):u(I,t):Oau(Ot) a“(l t)=0, )
u(x,0) =u®(x), E(X,O):u(l)(x). (3)
0<x<l, 0<ts<T,

Here u(x,t) is the sought beam deflection function at the point x at the time moment t,

| is the beam length, a and B are the given values, u®(x), uY(x) are the known functions,
and

U (x) = a” sin7, @
i=1
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Remark 1. The second requirement in (4) can be repl aced by
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wherei >i,, &£>0, c-const >0, i,issome natural number.
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Equation (1) was proposed by Woinowsky-Kriger [1] in 1950. Subsequently, the
investigation of equations of type (1) and with the same kind of nonlinearity evoked
interest on the part of various researchers (see, e.g., [2 — 4]), who were mainly concerned
with questions of the existence of a solution. In [5], a numerica method of solving
Timoshenko' s wave system, where nonlinearities are of the same kind as (1), is studied.

As far as we know, the question of construction and substantiation of approximate
algorithms for equation (1) has not been so far investigated.

A solution of problem (1)-(3) will be sought in the form

u,(x,t) = Zn:uni (t)sinil—m .

The coefficients u; (t) are defined by means of Galerkin’s method from the system of
ordinary differential equations

. 4 . 2 n
)+ w0+ (%T] [a+ﬂ§z i, (t)}um =0, i=12,.n. ©
j=1
with theinitial condition
du; 3 .
dt—p(O)—ai‘p) p=01 i=12..,n. (6)

Let us define the matrix Q, :Iﬁdiag(LZ,...,n) and the vectors LFJ)n ® = (uni (t))i":l,

gﬁ") = (ai“” )inzl, p=0.1. We introduce the scalar product (A, ), = Zn:/]i,ui , the norm
i=1
IR =(A,A)} and the energy norm ||/1||anp =(QA,N), p=12, for the vectors

AUORY, A=), H=)k
Using these notations, system (5) and condition (6) can be rewritten as

l'J’;’ (t) + Q:L’]’n (t) + (a + %”ﬁ’n (t) gz )Qﬁﬁ’n (t) =0, 0<t<T, (7
e
Cr0=8,  p-01 ®)
Consider the vector functions
o, Yo, W, 9)

where the last two are the new ones defined by the formulas
L=Qdo, Wo=to.
Then problem (7),(8) leads to the following problem

Po=Wo, 0= w,
(10)

80+ Qb0+ [a+ 2181 .o =0
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80=82 ¥0=28", =48 (1)

To solve problem (10), (11) we will use the difference method. On the timeinterval [O,
T] weintroduce the grid {t |0 =t, <t, <...<t,, =T} with avariable pitch r,, =t_-t__,
m=212,...,M. Approximate values of vectors (9) on the mth time layer, i.e, for t =t_,

m=01...,M, are denoted by Lﬁ):’, \‘/):’, \;\)/2’. They will be sought by using the modified
Crank-Nicolson scheme

S A A /e AP AR A

T, 2 ’ T, " 2
(12)
Pm |2 Pm-1||2
m _ Mm-1 m m-1 u, | ., U, ) m , Pma
\%n \k;n +an \'fn +\'7)n + a+ﬂ Qy Qy en +Vn =0,
T, 2 2 2 2
where
by =80, W=q:a?, W =ab (13)
System (12),(13) will be solved layerwise by an iteration method. Assuming that

1 m-1

l'J);“‘ , Vo \k’/;“‘l have aready been calculated, the problem can be reduced to finding
l'f;“, \V,T, \k;;“. For this, we use a Picard-type iteration method

pm,k pm—l m,k-1 m-1 pm,k pm—l m,k-1 m-1
un - un - \%n + \k;n vn - Vn - QZ \k;n + \%n
) n 1
T, 2 T, 2
a2 12
\k;m,k _\k;m—l \[7)m,k—l +\f7’m—1 ,[)1 &:nk ! o2 + Upr:n 1HQ2 \9m,k—l +\9m—1
n n + Q2 n n +|l g+ h h n n - 0’
I, " 2 2 2 2

k=12,...,
where §™P Mk {jmkp s the (k - p)-th iteration approximation for&™, ¥ W,
p=01.
In [6], the system of equations obtained by discretization of problem (1)-(3) is solved

by means of Jacobi’s nonlinear iteration method and the exactness of this method is
studied.

Below we give the results of investigation of the solution exactness of systems
(10),(11) and (12),(13).

It is proved that there exists a strong solution of problem (1)-(3), which is expanded
into a series

u(x,t) = iui (t)sinil—”" (14)
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where the coefficients u, (t) satisfy an infinite system of equations

. 4 o
o+( 7 (") [a+ﬂ§212uf(t)jui =0,
j=1
i=12,..., O0<t<T,
provided that
dPu,
dtP
Using n first coefficients of series (14), we form the vector p,&(t) = (u (®)",. Let us
consider the difference of vectors A t']’ (t)=u il u,(t)- p,u P(t) It satisfies the equation

Aty +Qind, (t)+(a+B' 16,6 ]Qﬁpn(t)

—(a+%|| Xl jQﬁ p.80 = &0 (15)

with the initial condition

—0)=3a", p=0L

d;tA:J“ 0 =0, p=0L
s, L0 =27 Sineoeinfo.
Equation (15) is S(I:a?;lrly multiplied by 200 u, (t). After that, using the a priori estimates
for |p,d(t) . I&ol . 6w o v 1712 n(t)Hnand the Gronwall inequality, we
prove

Theorem 1: For an error of Galerkin’s method, the following estimate is valid

80 - p.b 0], + 6.0 - pfol, s 2

where C, is some positive value not depending on n and t.

Remark 2: Theorem 1 holds true for a weaker restriction on u‘®(x), p =0, than the
4-2p,(p)
u

second restriction in (4), namely, (x)OL,(Ol), p=01.

dx* 2P
The solutions of systems (10), (11) and (12),(13) form respectively the vectors
Fo=Co0.fn080r adin=@E0 &), o<t<T, m=0L..M. We
introduce the vector Qnm :/Tn(tm) —/ﬁ“ , m=01...,M . To define it we have the equation
m _ Em-1 m m-1
gﬂ gﬂ — Ln E)n +221 +%£r:n,m—l +lB':n,m—l

T

(16)

m

and the condition
-0, (17)

n

Here

Bt = (K, (A 6+ Ko U o) o () + A )= (K (AT + K AT AR+ Ay,
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the approximation error is

Pt = Anltn) =Atns) | An(ta) * An(t)

" T " 2
Valt) + 4, )
! 2

m

- (Kn(j)n (tn) + Kn(/ﬁ)n (trs))

and K, =(K;)} 4 L,=(Ly;)} 4 are the third order block matrices with nonzero

blocks of the form
2

Alu
4

Lz =1, anser?ﬁ Ln32:_(a|n+Q§)1 K(A)=- S I

where | isthe unit matrix of n-th order and the vector A= (u,v,w), u,v,w OR".

Itisproved that‘tﬁ;”’m'lun < Cr’, where C isapositive value not depending on m and

’ j:]'l21

m
n

n . By virtue of this inequality and the a priori estimates for||1']’n (t)

u

QY Q?
system (16),(17) givesriseto
Theorem 2: If the pitch of the difference scheme (12),(13) satisfies the inequality
21-w,)
< ¥ T/

m 1

Vo *S
2
where @), isan arbitrary number fromtheinterval (0, 1), y, = (II—T n} +max(l,a), and s

is some value expressed in terms of the norms L,(0,1) of the functions u®(x), u®(x),
and their derivatives, then the following estimate holds for an error of the difference

scheme (12),(13)
gn(tm)_gr:n \Bn(tm)_\Br:n n SCZZm:Tz !

where C, isa positive value not depending on m, n and grid pitches.
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