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Abstract

As is known the entropy of a set quantitatively describes the uncer-
tainty index of any variable defined on it. Entropy is also an important
property for fuzzy sets as well. The work deals with the operation of
splitting a crisp indicator in the dual fuzzy subsets. More exactly,
the information measure of a split set – entropy is discussed. A com-
parison between the split set entropy and classical fuzzy set entropy
is discussed. The information measure of the Cartesian product of
two separated sets is presented as the main determinant of the fuzzy
entropy. The analytical form of a split dual fuzzy sets’ entropy is
obtained. It is proved that the Shannon entropy of a set can be rep-
resented as the additive sum of the entropies of its split dual fuzzy
sets. Two types of entropy are considered: entropy of dual fuzzy sets
of a split set and entropy of dual fuzzy sets obtained by point split-
ting (by its elements). It is proved that the entropy of the dual fuzzy
sets obtained by splitting the set is the additive sum of the Shannon
entropy of this set and the entropies of the dual fuzzy sets obtained
by the point splitting of the same set.

Keywords and phrases: Fuzzy set, Entropy of a fuzzy set, Split
Sets, Dual Fuzzy Sets, Multi-Criteria Decision Making.

AMS subject classification (2010): 28E10, 62A86, 60A86, 03E72,
68T30, 68T37.

1 Introduction

1.1. On the duality of fuzzy sets

In the investigation of problems related to the analysis and synthesis of
complex events, the application of L.A. Zadeh’s fuzzy sets theory [1] holds



AMIM Vol.29 No.1, 2024 G. Sirbiladze, B. Ghvaberidze, ...

significant relevance in today’s context. This is especially crucial as the
challenges in semantically representing expert qualitative information have
intensified due to the intricate nature of the subjects under investigation.
Present methods for assessing the precision of studying objects no longer
meet the expectations of contemporary researchers. Consequently, there
is a growing independence of the levels of object compatibility and incom-
patibility in recent research [2-15]. This independence arises from the dual
representation of evaluation, which has become a crucial aspect in deal-
ing with incomplete information. Exploring imprecisions and uncertainties
in modeling complex events is a topic of great interest, and the prevail-
ing direction of research involves portraying the dual nature of information
evaluation through independent degrees of belonging and non-belonging.
This concept was initially introduced by Atanasov [2].

Atanasov’s Intuitionistic Fuzzy Sets (IFS) theory [2] serves as an exten-
sion of Zadeh’s Fuzzy Sets (FS) theory [1]. IFS assign each element (µ, ν)
a membership degree (µ), a non-membership degree (ν), and a hesitancy
degree (1− µ, 1− ν) through Intuitionistic Fuzzy Numbers (IFN), making
it more adept at handling vagueness than FS. The extensive application
of IFS theory across various areas has been documented [5, 6], with defi-
nitions of fundamental arithmetic operations on IFN provided in [2]. The
theory finds significant utility in decision-making research. After investi-
gation of existing materials, the authors of [16] presented a review on IFS
studies. Despite its usefulness, IFN (µ, ν) encounters a limitation – the sum
of membership and non-membership degrees must be equal to or less than
1. But sometimes for the data provided by DM for certain attribute, the
same sum is greater than 1 (µ + ν) > 1. Yager introduced the concept of
Pythagorean Fuzzy Sets (PFS) (µ, ν) [3] as a generalization of IFS, relaxing
this constraint to the sum of squared degrees µ2+ ν2 ≤ 1. However, expert
orthopair assessments often defy full description using PFNs or IFNs due to
the intricacies of decision makers’ psychological evaluations and the chal-
lenging expression of attribute information. Yager addressed this issue by
proposing q-rung Orthopair Fuzzy Sets (q-ROFS) [5], where q ≥ 1, and the
sum of the q-th power of membership and non-membership degrees cannot
exceed 1.

For a q-rung orthopair fuzzy number (q-ROFN), the condition holds
that (µq + νq ≤ 1). It is evident that q-ROFSs generalize IFSs and PFSs,
where IFSs and PFSs are specific instances of q-ROFSs when is equal to 1
and 2, respectively. Consequently, q-ROFNs seem more fitting and profi-
cient in conveying decision maker’s (DM) assessment information. Ongoing
research efforts by the authors of this paper focus on the development of
aggregations of experts’ q-rung orthopair fuzzy evaluations, specifically ad-
dressing multi-criteria decision-making problems [6-14, 17].
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A distinct approach to the dual representation of a fuzzy set is presented
in [18]. Additionally, in their works [17, 18], the authors introduce the
innovative concept of lower α-level sets for fuzzy sets, considered as a dual
counterpart to upper q-level sets for fuzzy sets. This work also introduces
the concept of dual fuzzy subsets and establishes a dual decomposition
theorem. The study delves into the dual arithmetic of fuzzy sets in and
yields compelling results based on both upper and lower α-level sets.

Let us briefly discuss the novel concept: In practical scenarios, there are
instances where experts face challenges in determining compatibility lev-
els for all objects. These levels are essentially depicted through a specific
sampling of the universe, and experts may vary in their chosen samplings.
Even the samplings for fuzzy terms in linguistic variables can differ. De-
spite these variations, there is still a need for aggregating this information,
acknowledging that the universe may not be entirely represented. In such
situations, both Zadeh’s fuzzy set analysis and the presented dual forms in
the form of q-rung orthogonal fuzzy sets may not fulfill the requirements
for aggregations.To elaborate, for any expert within a particular universe
X{x1, ..., xn}, there exists a specific sampling of items A = {xi1 , ..., xil},
available for evaluation. The compatibility levels generated by an expert
can be represented as a function, fA(x) : A → [0, 1] with values known only
for elements within the set A ⊂ X. This data may differ for other evalua-
tions by the same expert or for evaluations by different experts. This new
type of information source diverges from Zadeh’s perspective on determin-
ing compatibility levels. Here, the information source is presented in pairs
⟨A, fA⟩, involving a different nature of both the source and the data.To
address this, the article proposes a means of semantically representing such
information through the concept of a split fuzzy set, which is based on
Zadeh’s fuzzy set concept. Specifically, the operation of splitting a crisp
subset into dual fuzzy sets is introduced. This dual, split fuzzy sets lattice
serves as a unified framework for aggregating expert evaluations from di-
verse samplings.

1.2. On finite set’s entropy

Boltzmann introduced the concept of entropy in the late 19th century
to quantify the irregularity of an ideal gas within a closed container. In con-
trast, information theory emerged in the 1940s while addressing telecommu-
nications issues. The primary objective of information theory is to explore
the principles governing the acquisition, transfer, processing, and storage of
information. Due to the inherent randomness in information transfer, sta-
tistical methods have become essential for studying these processes. Shan-
non further developed information theory, aiming to elucidate both the
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quantity and regularity of information in a dataset [19].
The abundance and variety of information suggest a lower entropy in

the data [20]. Entropy, alongside the concept of information, plays a crucial
role. Information theory, as mentioned earlier, delves into the quantitative
laws governing the acquisition, transfer, processing, and storage of informa-
tion. Before defining information, it is pertinent to elaborate on entropy,
also known as statistical entropy, which can be defined as a measure of
diversity across probability distributions.

Entropy serves as a gauge of a system’s uncertainty, with thermodynam-
ics, statistical physics theory, and information theory providing prevalent
definitions. This study exclusively adopts the information theory defini-
tion, disregarding other interpretations. The entropy of a system equals
the information required to know all possible states. When a system shifts
from an ordered, organized state to a disordered, unplanned one, its en-
tropy increases. In this context, information is perceived as the inverse
of entropy. Despite being commonly associated with thermodynamics, the
connection between entropy and information theory relies on mathemati-
cal proofs rather than intuition. Although the two types of entropy differ,
both are grounded in randomness. In thermodynamics, entropy is expressed
by dividing energy by temperature, often in terms of Kelvin. Conversely,
in communication engineering, Shannon entropy quantifies information in
bits, devoid of dimensions. The distinction arises from the state of random-
ness within a system. When randomness is maximum or message probabil-
ities are equal, the information source’s entropy reaches its maximum.

Shannon’s information theory considers information equivalent to fuzzi-
ness and is fundamentally a statistical theory focused on communication.
Shannon’s seminal work, ”A Mathematical Theory of Communication”
(1948) [19], defines information source as a person or device producing
statistically characterized messages. Information is assessed in terms of
unpredictability or information value for the receiver.

As was mentioned, in [21], the authors of the current work considered a
concept of a split fuzzy set. Basically, this concept allows for the new dual
representation or aggregation of expert evaluations. But the new concept is
again and again based on the concept of Zadeh fuzzy set. In particular, the
operation of splitting a crisp subset into dual fuzzy sets is introduced. In
this work we consider information measurement problems of split set into
dual fuzzy subsets. More exactly, we present a new definition of entropy
for the split set, based on Shannon’s [19] and Luka-Termini [22] entropies.
The basic properties of a new definition of entropy are studied.

The 2nd Section deals with the preliminary concepts. A brief review on
the fuzzy entropy is developed. Several classical fuzzy entropy definitions
are considered. In the second party of this section the information concept
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of a split crisp set into a pair of dual fuzzy sets is presented. In the 3rd

Section a definition of Entropy of a split set is presented. The basic prop-
erties of a new entropy are studied.Basis conclusions, obtained results and
future possible research directions are presented in the 4th Section.

2 Preliminary concepts

2.1. Basic fuzzy entropies

A. De Luca and S. Termini Entropy. The measure of a quantity of
fuzzy information gained from a fuzzy set or fuzzy system is known as
fuzzy entropy. The fuzzy entropy contains vagueness and ambiguity un-
certainties, while Shannon entropy contains the randomness (probabilistic)
uncertainty [23-25]. The concept of fuzzy entropy is established by incor-
porating the idea of a membership function. De Luca and Termini [22]
formulated fuzzy entropy by building upon Shannon’s function and de-
lineated a set of properties that a fuzzy entropy should adhere to. The
expression for the fuzzy entropy introduced by De Luca and Termini is
depicted in equation (1). It is defined a fuzzy entropy on a fuzzy subset
A of the finite set X = {x1, x2, ..., xn} based on the concept of member-
ship function, where there are n values of the membership function A -
{µi ≡ µA(xi)}, i = 1, ..., n

HA = −K
n∑

i=1

{µi log(µi) + (1− µi) log(1− µi)}. (1)

The four characteristics of fuzzy entropy are as follows:
P1: HA = 0 if and only if the set A is a crisp set (µi = 0 or 1 ∀xi ∈ A);
P2: HA is maximum if and only if µi = 0.5 ∀xi ∈ A;
P3: H ≥ H∗ where H∗ is the entropy of a sharpened version of A,

denoted as A∗;
P4: H = H where H is the entropy of the complement set A.
L. Zadeh introduced Probability Entropy, an extension of Shannon

entropy, to function as a fuzzy entropy on a fuzzy subset A of the fi-
nite set X = {x1, x2, ..., xn} based on the probability distribution P =
{p1, p2, ..., pn} on X. This entropy is mathematically expressed as [26]:

HA = −
n∑

i=1

µA(xi)pi log(pi). (2)

Here µA represents the membership function of A and pi is the probability
of the occurrence of xi. It is evident that this scenario encompasses three
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types of uncertainties: randomness, ambiguity, and vagueness; encapsulat-
ing both randomness and fuzziness.

In the context of fuzzy sets, specifically when the intersection between
a fuzzy set and its complement is not an empty set ∅, Yager [27, 28] in-
troduced a fuzzy entropy applicable to a fuzzy subset A of the finite set
X = {x1, x2, ..., xn}. This serves as a fitting measure of fuzziness for the
set A:

HA =

1−
∑
x∈X

(|µA(x)− (1− µA(x))|)

card(X)
,

(3)

where

card(X) =
1

2

∑
x∈X

(1− |µA(x)− (1− µA(x))|). (4)

The summation term
∑
x∈X

(|µA(x) − (1 − µA(x))|) in equation (3) can be

understood as the Hamming distance, denoted as φ1(A,A
c), between the

sets A and Ac. Consequently, HA can be expressed as

HA =
1− φ1(A,A

c)

card(X)
. (5)

(5) Alternatively, an equivalent expression can be obtained by using the
Euclidean distance, denoted as, φ2(A,A

c), instead of the Hamming distance
to obtain an equivalent HA. The Euclidean distance is defined as:

φ2(A,A
c) =

√∑
x∈X

(|µA(x)− (1− µA(x))|)2. (6)

R. L. Kaufmann Entropy. Kaufmann [29] introduced an entropy to measure
the fuzziness of the fuzzy set as follows:

HA = − 1

ln(n)

∑
x∈X

πA(x)− µA(x). (7)

where

πA(x) =
µA(x)

n∑
i=1

µA(xi)

.
(8)

Kaufmann noticed that this method of computing the entropy for a fuzzy
set does not depend on accounting for the effective values of µ, and instead
it does for their relative values. The relative values come from the function
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given in equation (8). This is a drawback for this measure because the rel-
ative values lead to the same entropy for different fuzzy sets and ordinary
sets.

2.2. Representation of a crisp set as a pair of dual fuzzy subsets

Consider the information source previously introduced in the introduc-
tion, pertaining to expert evaluations. Assume that, for any expert within
a particular universe X = {x1, x2, ..., xn}, there exists a specific sampling of
elements available for assessment. Suppose the expert’s compatibility levels
are denoted by a certain function fA(x) : A −→ [0, 1], with values known
solely for elements within the set A ⊂ X. This information may vary for the
expert’s other evaluations and for assessments by different experts. This
new type of information source diverges from Zadeh’s perspective on deter-
mining compatibility levels [1]. In this instance, the information source is
represented by pairs ⟨A, fA⟩. Let A ⊂ X and IA ∈ {0, 1}X be its indicators.
Express it as follows:

IA(x) = f(x)IA(x) + (1− f(x))IA(x), x ∈ X (9)

here f(x) : X −→ [0, 1] is an extension of the function

fA(x) : A −→ [0, 1] (10)

on the universe X (f(x) = fA(x), x ∈ A).
Definition 1 [21]. We designate the representation (9)-(10) as the

splitting of the indicator IA concerning the function f .
Let’s introduce the following notations:

IÃ(x) ≡ f(x)IA(x) and IÃD(x) ≡ (1− f(x))IA(x). (11)

Indicators IÃ, IÃD ∈ [0, 1]X belonging to two fuzzy subsets Ã, ÃD ⊂ X are
termed as the splitting of an indicator IA associated with a subset A ⊂ X
and

IA = IÃ + IÃD . (12)

Definition 2 [21]. Indicators IÃ, IÃD ∈ [0, 1]Ω and fuzzy subsets

Ã, ÃD ⊂ X are referred to as dual entities, respectively.
As per L. Zadeh [1] IÃ represents an indicator or membership function

(compatibility function) of a fuzzy subset Ã. It is evident that the process
of splitting remains unaffected by the extension of the function fA(x) :
A −→ [0, 1]. More precisely, the pair ⟨A, fA⟩ results in a pair of splitting
fuzzy sets (Ã, ÃD).
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Example 1. Consider a set of digits X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Ad-
ditionally, let the universe’s sampling be a certain subset A ⊂ X. For
instance, assume A represents the set of odd digits - A = {1, 3, 5, 7, 9} and
the expert’s evaluation exclusively on this sampling is expressed by the
function fA(x) : A −→ [0, 1], fA(x) =

1
x+1 , x ∈ A. Let f(x) : A −→ [0, 1]

be any extension of the function fA(x) on X. In this case, the splitting of
the IA of the A ⊂ X, associated with the subset within the universe X into
two dual fuzzy sets (or their indicators/membership functions) appears as
follows:

Ã = {0/0, 1/(1/2), 2/0, 3/(1/4), 4/0, 5/(1/6), 7/(1/8), 8/0, 9/(1/10)}
and

ÃD = {0/0, 1/(1/2), 2/0, 3/(3/4), 4/0, 5/(5/6), 6/0, 7/(7/8), 8/0, 9/(9/10)}.
(13)

In practical terms, dual splitting fuzzy subsets ⟨Ã, ÃD⟩ are created as fuzzy
subsets within the universe X. The practical interpretation is as follows:
when describing an uncertain term related to a linguistic variable over the
elements of a universe, a membership function is typically constructed.
However, to extend the information contained in the membership function
only to specific elements of a concrete crisp subset, the set is split into dual
split fuzzy subsets. Therefore, the extended information is encapsulated
within dual fuzzy sets. The duality of this extension implies that both
fuzzy sets convey the same information, but encoded in different manners.

Note that the generation of splitting dual fuzzy subsets Ã and ÃD within
X is influenced by the subset A, A ⊂ X and a particular function fA(x) :
A −→ [0, 1]. As previously discussed, the application of the split operation
can be relevant in various scenarios. Here’s one example: let’s explore the
application of splitting a set into dual fuzzy sets in the context of multi-
attribute decision making (MADM).

Imagine a MADM model involving 5 attributes X = {x1, x2, ..., x5}
and 3 alternatives D = {d1, d2, d3}. Assume that a decision-making ma-
trix represents normed ratings in the range [0, 1], and certain ratings are
unspecified:

As evident from this matrix, each alternative has attributes for which
the rating evaluations are absent. Such instances can occur in practical sce-
narios for various reasons. One such situation arises when there is a consid-
erable number of attributes due to the detailed nature of the task, making
it challenging for experts to assess all attributes. Such occurrences are com-
mon, especially when constructing recommendation models in collaborative
filtering problems. Filling out these empty elements is important. If there
is a substantial amount of prehistorical data, a machine learning approach
can effectively handle this issue. However, when objective data is lacking,
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and expert evaluations are sparse, the splitting operation introduced here
provides a viable solution.

Observing that alternative d1 is evaluated on a subset of attributes
A1 ≡ {x1, x3, x4}, alternative d2 - on a different subset A2 ≡ {x2, x4, x5},
and alternative d3 - on yet another subset of attributes A3 ≡ {x1, x2, x3},
we can employ the split operation on these sets to create dual fuzzy sets.
Let us split these sets into dual fuzzy sets. Consequently, the decision
matrix can be expressed as:

Thus, the alternative di i = 1, 2, 3 is characterized by dual split fuzzy
subsets ⟨Ãdi , Ã

D
di
⟩ across the entire attribute’s universe X = {x1, x2, ..., x5}.

The development of an aggregation tool and the methodologies for con-
structing ranking relations can explore various directions, utilizing the def-
initions and findings outlined in the subsequent sections regarding the op-
erations of dual split sets. One straightforward approach is to amalgamate
the elements of split dual fuzzy sets into pairwise intuitionistic fuzzy num-
bers through a simple concatenation.

It is important to note the symbolic intuitionistic fuzzy number (0.0, 0.0),
where both the attribution and non-attribution values are 0.0, indicating
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that the evaluation has not been conducted. In practical terms, if we as-
sign a formulaic quantitative value to unrated assessments, it is natural to
substitute it with the zero intuitionistic fuzzy numerical rating - (0.0, 1.0).
Consequently, the decision-making matrix assumes the following structure:

Assume the attribute weight vector in this model is represented by
W = {w1, w2, ..., w5} = {0.1, 0.2, 0.4, 0.1, 0.2}. To rank alternatives, we
will employ the Intuitionistic Fuzzy Weighted Averaging (IFWA) operator:

di ∼ IFWA(a1, ..., a5) = (w1 ⊙ a1)+̂ · · · +̂(w5 ⊙ a5)

As an illustration, for d1 the calculation would be:

d1 ∼ 0.1⊙ (0.2, 0.8)+̂0.2⊙ (0.0, 1.0)+̂0.4⊙ (0.7, 0.3)

+̂0.1⊙ (0.6, 0.4)+̂0.2⊙ (0.0, 1.0).

Here, +̂ and ⊙ refer to the addition and multiplication operations on intu-
itionistic fuzzy numbers, respectively [2].

3 Entropy of a split set

Let X = {x1, ..., xn} be a finite set of elementary random events with prob-
abilities p1, ..., pn. As was mentioned, a dual element (dual subset) in [21]
is defined basing on the procedure of representation of a crisp set as a pair
of dual fuzzy sets, which is called a procedure of splitting a crisp set. Ac-
cordingly, let us split the set X : X = X̃ ⊕ X̃D. Let this splitting is done
”point-by-point” (pointwise splitting) [21]. The amount of information cor-
responding to an unsplit point depends on the corresponding probability
I = I(p(x)). For a split point, it is natural to assume that the informa-
tion depends on both the probability and the corresponding value of the
membership function of the split subset:

Ĩ = I(µX̃(x), p(x)). (14)

Similarly, for a dual fuzzy point:

ĨD = I(µX̃D(x), p(x)) = I(1− µX̃(x), p(x)). (15)
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These functions, as we shall see below, are defined in such a way that

I(p(x)) = I(µX̃(x), p(x)) + I(µX̃D(x), p(x)). (16)

In order to establish the form of the function Ĩ, let us consider its three
properties (without proof).

1) Ĩ as a function of p is continuous on (0; 1].
2) Let be given some finite set Y = {y1, ..., ym}. Let be given splitting:

X = X̃⊕ X̃D and Y = Ỹ ⊕ Ỹ D. Splitting of X×Y is carried out according
to the rules given in [21]. If for some x ∈ X and y ∈ Y the values of the
membership functions are the same µX̃(x) = µỸ (y) = µ, then the value of
the membership function of (x, y) ⊂ X × Y will be the same. We assume
that Ĩ has the following property

I(µ, pq) = I(µ, p) + I(µ, q) for all 0 ≤ µ, p, q ≤ 1. (17)

3) An increase in the value of the membership function entails the same
increase in the information of the corresponding fuzzy event:

I(λµ, p) = λI(µ, p). (18)

for any 0 ≤ µ, p ≤ 1 and nonnegative λ.
Proposition 1. Let the function Ĩ = I(µ, p) satisfy conditions 1). -

3). Then Ĩ has the form

Ĩ = I(µ, p) = −kµ log p. (19)

Proof. Relation (18) entails:

I(µ, p) = µI(1, p). (20)

for any 0 ≤ µ, p ≤ 1, while (20) for unsplit sets (µ = 1)

I(1, p, q) = I(1, p) + I(1, q). (21)

The only continuous solution of this functional equation, as is known [30],
is as follows

I(1, p) = −k log p, (22)

where k (k > 0) is constant. Since the amount of information is considered
to be a non-negative value, then Proposition 1 is proved. □

Let us go back to the total set of random elementary events. We have
shown that the amount of information corresponding to a split event x̃i is
determined by the formula

Ĩi = I(µi, pi) = −kµi log pi. (23)
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Therefore, the average amount of information corresponding to the split
set X̃ is computed using the formula:

Z(X̃) =
n∑

i=1

piĨi = −k
n∑

i=1

µipi log pi. (24)

This is the entropy of a fuzzy subset according to Zadeh [26]. Analogously,

Z(X̃D) =
n∑

i=1

piĨ
D
i = −k

n∑
i=1

µD
i pi log pi. (25)

as µi + µD
i = 1, i = 1, ..., n. The following proposition becomes clear:

Proposition 2. The Shannon entropy of a set is represented as the
additive sum of the entropies of its split dual fuzzy sets

Z(X̃) + Z(X̃D) = H(X), (26)

where H(X) is the Shannon entropy.
Let’s make one remark. According to [21], the probability of a split

point is considered to be the value µipi, and the conditional probability of
x̃i in the case when x̃i ∈ X̃ is determined by the formula

p(x̃i/X̃) =
µipi

P̃
, (27)

where P̃ is the probability normalized value. The corresponding Shannon
amount of information has the following form

H(X̃) = −k

n∑
i=1

µipi

P̃
log

µipi

P̃
. (28)

In connection with this formula, let us cite the following two inequalities
[31]. First inequality:

−k

n∑
i=1

µipi

P̃
log

µipi

P̃
≤ −k

n∑
i=1

µipi

P̃
log pi (29)

besides, equality takes place when all µi are equal. This inequality can be
rewritten as follows

−k
n∑

i=1

µipi

P̃
log

µi

P̃
≤ 0 (30)

i.e., at least one

µi ≥ P̃. (31)
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The use of normalized probabilities on X̃ [21] entails the need for a certain
agreement between ordinary probabilities and membership functions. The
last inequality must be considered as a condition for such agreement. The
second inequality is

H(X̃) ≤ P̃−1Z(X̃) (32)

which is a direct consequence of the former.
We will introduce two more entropy measures, the entropy of the split

set and the entropy of splitting, as a result of the pointwise splitting of the
universal set.

Based on the well-known property of the Shannon entropy function [31],
we can write

H(x̃1 ⊕ x̃D1 , ..., x̃n ⊕ x̃Dn ) = H(µ1p1, µ
D
1 p1, ..., µnpn, µ

D
n pn)

= H(p1, ..., pn) +
n∑

i=1

piH(µi, µ
D
i ).

(33)

The obtained expression

S(X̃, X̃D) = H(X̃ ⊕ X̃D) ≡ H(x̃1 ⊕ x̃D1 , ..., x̃n ⊕ x̃n ⊕ x̃Dn ). (34)

we consider as the entropy of a split set X̃ ⊕ X̃D, and the expression

L(X̃ ⊕ X̃D) =
n∑

i=1

piH(µi, µ
D
i ) (35)

as the entropy of splitting.
As a result, we receive the following proposition:
Proposition 3. The entropy of the dual fuzzy sets obtained by splitting

a set is the additive sum of the Shannon entropy of this set and the entropy
of the dual fuzzy sets obtained by the pointwise splitting of the same set:

S(X̃, X̃D) = H(X) + L(X̃, X̃D). (36)

For the dual pair u∼ [21] we assume:

pu∼ = pX̃ + pX̃D = p. (37)

Therefore, the conditional probabilities [31] have the following form

p(x̃/u∼) =
px̃
pu∼

= µ, p(x̃D/u∼) =
px̃D

pu∼
= 1− µ. (38)

and the conditional entropy equals

X(X̃, X̃D/u∼) = H(µX̃(x), 1− µX̃(x)). (39)
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(33) can be rewritten as follows

H(x̃1 ⊕ x̃D1 , ..., x̃n ⊕ x̃Dn ) = H(x1, ..., xn) +
n∑

i=1

piH(x̃i, x
D
i /u

∼). □ (40)

Finally, we present a proposition.
Proposition 4. Let the set of dual pairs of a split set be ordered

according to the levels of fuzziness [32]. Then if u∼ ⪯ v∼, we have

H(x̃, x̃D/u∼) ≤ H(ỹ, ỹD/v∼). (41)

Indeed,

u∼ ⪯ v∼ ⇔ min(µx̃, µx̃D) ≤ (µỹ, µỹD) ≤ max(µx̃, µx̃D) ⇒

|1/2− µx̃|, |1/2− µx̃D | ≥ |1/2− µỹ|, |1/2− µỹD | ⇒

H(x̃, x̃D/u∼) ≤ H(ỹ, ỹD/v∼). □

4 Conclusions

The phenomenon of operation of splitting a set into two dual fuzzy sets is
presented. The information measure of this operation - entropy is studied.
The comparison between the entropy of a split set and the entropy of clas-
sical fuzzy sets is discussed. It is proved that the Shannon entropy of a
set represents an additive sum of the entropies of its split dual fuzzy sets.
The second type of splitting operation is also considered. The entropy of
dual fuzzy sets obtained by pointwise splitting of the set is studied. It is
argued that the entropy of the dual fuzzy sets obtained by splitting a set
is the additive sum of the Shannon entropy of this set and the entropies
of dual fuzzy sets obtained by the pointwise split of the same set. The
obtained results will play an important role in the multi-attribute/criteria
decision-making problems with use of the split operation and with their
entropy involvement. In future studies, the analysis of the split dual sets
will be developed for different fuzzy environment.
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