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Abstract

An initial boundary value problem for Kirchhoff string nonlinear
differential equation is considered in case of time dependent inhomo-
geneous boundary condition of the first type. The problem is reduced
to a solution of more complex equation than the original, the types
of the initial and boundary conditions remained as before, but now
the boundary condition has become homogeneous. To find an approx-
imate solution of the received problem, a numerical algorithm that is a
combination of the projection method, the implicit difference scheme,
and the iteration process is used.
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1 Statement of Problem

Let us consider the nonlinear equation

wtt(x, t)−
(
α+ β

∫ L

0
w2
x(x, t) dx

)
wxx(x, t) = f(x, t),

0 < x < L, 0 < t ≤ T,

(1)

with initial boundary conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x),

w(0, t) = µ(t), w(L, t) = ν(t),

0 ≤ x ≤ L, 0 ≤ t ≤ T.

(2)



AMIM Vol.29 No.1, 2024 J. Peradze

Here, α > 0, β > 0, L and T are the given constants, while f(x, t) ∈
L2((0, L)× (0, T ]), w0(x) ∈W 2

2 [0, L], w
1(x) ∈ L2[0, L], µ(t), ν(t) ∈ C2[0, T ]

are the given functions.
In 1876, whcn studying the vibration of a string, a German physicist

G. Kirchhoff [16] obtained an integro-differential equation of the type (1)
in case f(x, t) = 0. Kirchhoff’s model takes into account the changes in
length of the string produced by transverse vibrations.

Equation (1) and its generalizations have attracted the attention of
manu researchers. Problem of solvability was investigated by Arosio and
Garavaldi [1], Bernstein [3], Cavalcanti et al. [5], D’Ancona and Spagnolo
[8], Greenberg and Hu [10], Hirosawa[11, 12], Izaguerre et al. [13], Lapa [18],
Manfrin [19], Medeiros [21], Newman [22], Nishihara [24], Pokhoshaev [27]
and others. The problem of methods of approximate solution, which is con-
sidered in this paper, was investigated by Attigue [2], Bilbao [4], Chandhary
and Srivastava [6], Christie and Sanz-Serna [7], Dickey [9], Kachakhidze et
al. [15], Mbehou et al. [20], Ngoc et al. [23], Peradze [25], Peradze et al.
[26], Rincon and Rodrigues [28], Rincon et al. [29], Rogava and Vashakidze
[30], Truong et al. [31].

The approximate methods of solution of some class of parabolic integro-
differential equations are investigated by Jangveladze et al. [14].

2 Reducing Inhomogeneous Boundary Conditions
to Homogeneous Ones

Let us introduce an auxiliary function u(x, t), using the formula

w(x, t) = u(x, t) +

(
L− x

L
µ(t) +

x

L
ν(t)

)
,

0 ≤ x ≤ L, 0 ≤ t ≤ T.

(3)

Therefore,

u(x, t) = w(x, t)−
(
L− x

L
µ(t) +

x

L
ν(t)

)
. (4)
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Define the task for new function. Using (1)–(4), we get

wtt(x, t) = utt(x, t) +

(
L− x

L
µ′′(t) +

x

L
ν ′′(t)

)
,

wx(x, t) = ux(x, t) +
1

L
(−µ(t) + ν(t)), wxx(x, t) = uxx(x, t),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

u0(x) = w0(x)−
(
L− x

L
µ(0) +

x

L
ν(0)

)
,

u1(x) = w1(x)−
(
L− x

L
µ′(0) +

x

L
ν ′(0)

)
,

u(0, t) = w(0, t)− (µ(t) + 0) = µ(t)− µ(t) = 0,

u(L, t) = w(L, t)− (0 + ν(t)) = ν(t)− ν(t) = 0.

(5)

Applying (5), we get the following boundary value problem for function
u(x, t)

utt(x, t)−
{
α+ β

[ ∫ L

0
u2x(x, t) dx+

2

L

(
− µ(t) + ν(t)

) ∫ L

0
ux(x, t) dx

+
1

L

(
− µ(t) + ν(t)

)2]}
uxx(x, t) = φ(x, t), (6)

0 < x < L, 0 < t ≤ T,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

u(0, t) = 0, u(L, t) = 0,

0 ≤ x ≤ L, 0 ≤ t ≤ T,

(7)

where

φ(x, t) = f(x, t)− 1

L

(
(L− x)µ′′(t) + xν ′′(t)

)
. (8)

3 Numerical Algorithm for Auxiliary Problem

The algorithm of solution of problem (6), (7) contains three parts.

3.1. Space discretization-projection method

We write an approximate solution of problem (6), (7) in the form

un(x, t) =

n∑
i=1

uni(t) sin
iπ

L
x, (9)
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where the coefficients uni(t) are defined by Galerkin’s method from the
system of ordinary differential equations and the conditions

u′′ni(t) +

(
α+

βL

2

n∑
j=1

(jπ
L

)2
u2nj(t) +

β

L

(
− µ(t) + ν(t)

)2)
×
( iπ
L

)2
uni(t) = ψni(t), (10)

uni(0) = u0i , u′ni(0) = u1i , i = 1, 2, . . . , n, (11)

where based on (7) and (8),

ψni(t) =
2

L

∫ L

0
f(x, t) sin

iπ

L
x dx− 2

iπ

(
µ′′(t) + (−1)i+1ν ′′(t)

)
,

i = 1, 2, . . . , n,

upi =
2

L

∫ L

0
up(x) sin

iπ

L
x dx, p = 0, 1, i = 1, 2, . . . , n.

3.2. Time discretization-implicit difference scheme

To solve problem (10), (11) on the time interval [0, T ], we introduce the
grid with the step τ = T

M , M > 2, and nodes tm = mτ , m = 0, 1, . . . ,M .
An approximate value of uni(t) on the m-th level, i.e., for t = tm, m =
0, 1, . . . ,M , is denoted by umni. Firther, we need the notation ψm

ni = ψni(tm),
m = 0, 1, . . . ,M , i = 1, 2, . . . , n.

We use the following difference scheme of Crank–Nicolson type

umni − 2um−1
ni + un−2

m

r2

+
1

2

( iπ
L

)2 1∑
p=0

{[
α+

βL

4

n∑
j=1

(jπ
L

)2(
(um−p

nj )2 + (um−p−1
nj )2

)

+
β

2L

1∑
l=0

(
− µ(tm−p−l) + ν(tm−p−l)

)2]um−p
ni + um−p−1

ni

2

}
=

1

2

(
ψm
ni + ψm−2

ni

)
,

m = 2, 3, . . . ,M, i = 1, 2, . . . , n.

Let us represent this system of equations in the form

8
( L

τiπ

)2
umni +

[
2α+

βL

2

n∑
j=1

(jπ
L

)2(
(umnj)

2 + (um−1
nj )2

)
+
β

L

1∑
l=0

(
− µ(tm−l) + ν(tm−l)

)2]
(umni + um−1

ni ) = 8
( L

τiπ

)2
gmni, (12)

m = 2, 3, . . . ,M, i = 1, 2, . . . , n,
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where

gmni = 2um−1
ni − um−2

ni − τ2

2

(
α+

βL

2

n∑
j=1

(jπ
L

)2 (um−1
nj )2 + (um−2

nj )2

2

)

×
( iπ
L

)2 um−1
ni + um−2

ni

2
+
τ2

2
(ψm

ni + ψm−2
ni ),

m = 2, 3, . . . ,M, i = 1, 2, . . . , n,

and using (3), (4), (6) and (11) supplement it with the equalities

u0ni = u0i ,

u1ni = u0i + τu1i +
τ2

L

∫ L

0

{
f(x, 0)− 1

L

(
(L− x)µ′′(0) + xν ′′(0)

)
+

[
α+ β

∫ L

0

(
u0 ′(x) +

1

L

(
− µ(0) + ν(0)

))2
dx

]
u0 ′′(x)

}
× sin

iπ

L
x dx,

i = 1, 2, . . . , n.

(13)

Suppose that umn (x) is an approximation of function un(x, t) at t = tm,
2 ≤ m ≤M . Using formula (9) and the values umni, i = 1, 2, . . . , n, assume

umn (x) =

n∑
i=1

umni sin
iπ

L
x. (14)

3.3. Solution of the discrete system-iteration method

The last part of the algorithm is aimed at solving the discrete system of
nonlinear equations (12), (13). It is assumed that the counting if performed
levelwise, more precisely, knowing the results for the preceding two levels,
on them-th time level, 2 ≤ m ≤M , we have to solve the nonlinear system of
algebraic equations (12), (13) with respect to the values umni, i = 1, 2, . . . , n.
For this, we use the Jacobi type iteration method of the form

8
( L

τiπ

)2
umni,k+1 +

[
2α+

βL

2

( iπ
L

)2(
(umni,k+1)

2 + (um−1
ni )2

)
+
βL

2

n∑
j=1
j ̸=i

(jπ
L

)2(
(umnj,k)

2 + (um−1
nj )2

)

+
β

L

1∑
l=0

(
− µ(tm−l) + ν(tm−l)

)2]
(umni,k+1 + um−1

ni ) = 8
( L

τiπ

)2
gmni, (15)

k = 0, 1, . . . , i = 1, 2, . . . , n,
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where umni,k is the k-th iteration approximation of umni, k = 0, 1, . . . . In

order not to complicate the discussion, here we assume that um−2
ni and um−1

ni ,
i = 1, 2, . . . , n, are defined with such accuracy that the corresponding errors
can be neglected. Besides, let’s assume umni,0 = um−1

ni , m = 2, 3, . . . ,M ,
i = 1, 2, . . . , n.

The equality (15) is a cubic equation with respect to the sought value
iπ

L
umni,k+1 on (k+1)-th iteration step for each i. Therefore, to simplify the

iteration process, let us take into consideration that according the Cardano
formula [17], a priori real root for cubic equation

z3 +Az2 +Bz + C = 0 (16)

is equal to

z = −A
3
+

[
− S

2
+

(
S2

4
+
R3

27

) 1
2

] 1
3

−
[
S

2
+

(
S2

4
+
R3

27

) 1
2

] 1
3

, (17)

where

R = −A
2

3
+B, S =

2A3

27
− AB

3
+ C. (18)

Let us rewrite (15) in the form (16) as follows(
iπ

L
umni,k+1

)3

+ am−1
ni

(
iπ

L
umni,k+1

)2

+ bmni,k

(
iπ

L
umni,k+1

)
+ cmni,k = 0, (19)

k = 0, 1, . . . , i = 1, 2, . . . , n,

where

am−1
ni =

iπ

L
um−1
ni , bmni,k = dmni,k +

(
iπ

L
um−1
ni

)2

+
16

βL

(
L

τiπ

)2

,

cmni,k =
iπ

L
um−1
ni

(
dmni,k +

(
iπ

L
um−1
ni

)2)
− 16

βL

(
L

τiπ

)2 iπ

L
gmni,

dmni,k =
4α

βL
+

n∑
j=1
j ̸=i

((
jπ

L
umnj,k

)2

+

(
jπ

L
um−1
nj

)2)

+
2

L2

1∑
l=0

(
− µ(tm−l) + ν(tm−l)

)2
.

(20)

(19) is a special type of equation (16). Applying formula (17) and
notations (18)–(20), we obtain the required following formula, in which
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iπ

L
umni,k+1 is expressed through the known values

iπ

L
umni,k+1 = −

am−1
ni

3
+

1∑
p=0

(−1)p

(
(−1)p+1

smni,k
2

+

(
(smni,k)

2

4
+

(rmni,k)
3

27

) 1
2

) 1
3

,

k = 0, 1, . . . , i = 1, 2, . . . , n,

where

rmni,k = −
(am−1

ni )2

3
+ bmni,k, smni,k =

2(am−1
ni )3

27
−
am−1
ni bmni,k

3
+ cmni,k.

For fixed n ≥ 1, 2 ≤ m ≤ M and k = 1, 2, . . . , in formula (14) we
replace umni with the k-th iteration approximation of this value, i.e., of
umni,k, i = 1, 2, . . . , n, and instead of umn (x) we write umn,k(x). So, let

umn,k(x) =
n∑

i=1

umni,k sin
iπ

L
x. (21)

Formula (21) represents the solution of problem (6), (7), which is obtained
by the algorithm described here at k-th iteration step.

4 Appropriate Solution of Problem (1), (2)

Assume that problem (6), (7) is solved by the algorithm considered herein.
Let us find the values of the solution of problem (1), (2) at time grid notes
tm = mτ , m = 0, 1, . . . ,M .

For t0 this value is exact, w(x, t0) = w0(x), and for t1 it is approximate,

w(x, t1) ≈ w0(x)+τw1(x)+
r2

2

[
f(x, 0)−

(
α+β

∫ L

0
(w0 ′(x))2dx

)
w0 ′′(x)

]
,

since it is obtained using the Taylor’s formula.
As follows from equalities (3) and (21) for fixed n ≥ 1, 2 ≤ m ≤M , and

k = 1, 2, . . . , the corresponding approximation of the solution of problem
(1), (2), which we denote by wm

n,k(x) has the form

wm
n,k(x) =

n∑
i=1

umni,k sin
iπ

L
x+

(
L− x

L
µ(tm) +

x

L
ν(tm)

)
.
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5 Conclusion

Reformulation of the problem justified itself. As a result, it became possible
to get the convenient system of equations at the stage of space discretiza-
tion. Also, no significant difficulties were created at the stage of time
discretization and for application of the iteration method at the stage of
solution the system of discrete equation.

Should also be noted useful to apply the Cardano formula to solve the
system of discrete equations with cubic nonlinearity.
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