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Abstract

The flow of conducting, viscous fluids in circular pipes under trans-
verse magnetic field is studied theoretically. The correlation of Hart-
man’s figure, Poisale’s figure, Reynold’s figure and conductivity of
walls are considered.
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1 Introduction

Hartmann[3] carried out the pioneer work in the study of steady magneto-
hydrodynamic channel flow of a conducting fluid under a uniform magnetic
field transverse to an electrically insulated channel wall. The magnetohy-
drodynamic interaction under constant uniform pressure gradient is clearly
demonstrated. Later Chang and Lundgren [7] solved the same problem
with the channel wall of different conductivity. It is important to the basic
understanding of magneto-hydrodynamics to extend this problem to in-
clude the effect of transient pressure gradient. This paper carries out such
work.
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It should be pointed out that the ordinary hydrodynamic channel flow
under time-dependent pressure gradient is not a vailable in the literature
except for Uchida’s treatment of pipe flow under oscillatory pressure gradi-
ent. His work is related to a limiting case of the present work if the fluid is
assumed to be electrically nonconductive, or if there is no applied magnetic
field.

The problem is simplified by assuming fully developed laminar flow and
a perfectly con-ducting channel wall, which leads to linear partial differ-
ential equations. Thus the equations are amenable to the methods of the
placeLaplace transformation.

The basic differential equations, similar to the early work of Chang and
Yen [8], are given and the initial boundary conditions are specified. For the
case of a pressure gradient which is zero for time less than zero and periodic
for time greater than zero, the solution can be conveniently decomposed into
two parts, (a) quasi-stedy stage, and (b) initial stage. Next, the pressure
gradients of step function of time and delta function of time are considered.
For the step-function case, in the limit as time is allowed to go to infinity, it
is shown that Hartmann’s work of Chang and Lundgren [7] are confirmed.
In the cases of step and pulse pressure gradients, many new and interesting
features are given in contrast to the case of an electrically nonconducting
fluid.

2 Basic part

Exploration of flows of electrically conducting fluid with two approaches
are considered either in noninductive and inductive ways. Magnetohydro-
dynamics main equations in noninductive (R,, << 1) approach will be
done as follows [4-7] :

%4— (VV) V= %gmdervA‘?— z (H X (X7>< ﬁ)) ;
divV =0, divH =0, rotH, (1)
pCv (% +(VV)T) =KAT+ @+ (V x E)Z.

— =\ 2
where o (V X H ) is a Jole heat, and @ is a dissipation function as a result

of friction and will be gauged as follows:
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Let us consider flow of viscous incompressible weakly conducting fluid
taking into account heat transfers under effects of external homogenous
magnetis field (Hp) in square pipe. Here we may suppose that the conditions
are created when the tension of electric field is equal to zero (E = 0).

Induced magnetic field inside fluid is less in contrast with external magnetic
field and it is ignored.

It is well known that the fluid speed has only one constituent: 17 =
V.(x,t) directed along axis OZ, and temperature T is considered to be the
function of axis x and t (T=T (x,t)).

Taking into consideration of above mentioned the system of magneto-
hydrodynamic equations in non-dimensional values is as follows[1,2,8]:

oU U 10U
= T MU=
or " om: Ror TMU=I0)

00 920 1 06 U\ 2
P— == M?U?.
or  OR’  ROR <8R) *
where U = %, R=7t= ‘1277, 0 = %, f(r) = —V%/zp%—lj - non-

dimensional values, and Vo and a-typical speed and length, correspond-
ingly, M = Hoa\/% - Hartmann’s number, R,, = %2 - Raynold’s

Vm
magnetic number, P, = % - Prandtl’s number, a = wT“Q— simulation
criterion, established by pulsating flow. p, w, v, n, Cv, k, o, vy -
density, frequency, kinematic viscosity, dynamic viscosity, heat capacity ,
heat conduction, electrical conduction and fluid magnetic viscosity coeffi-
cient, correspondingly.

Extreme conditions generally are as follows:

U(Ra 0) =0, U(lvT) = 901(7-)’ 01,2(Ra 0) = Q1,2(R)’ (4)
0(1,7) = 0,(1,7) + 02(1,7) = ¢V (7) + ¢ (1) = q(7),

where 0 (R, T) — temperature while in equation of heat-transfer is taken into
account only viscous heat, and 03(R, 7) - temperature while in equation of
heat-transfer is taken into account only Jole heat.
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It is well known that pulsating flow of fluid is caused only by pulsating
drop of pressure (f(7) = Ae'@7), the pipe is not wheeled and change of
temperature on the surface of the pipe is not equal to zero (¢1(7) =0,
012(R,0) =0, 612(1,7) = BLgeQi‘”). In equation of heat-transfer is taken

into account either viscous heat —(‘3—%)2, or Jole heat (MU)2.
Let us search solution of for the task (3) — (4) in following view [3]:

U(R,7) = p(R)e™,
01(R,7) = P(R)e*T, ()
02(R, ) = a(R)e™T.

Finally, for speed and heat transfer we will get :

A I (VM +iaR)
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(1o (VAT T i) — Iy (\/WRHQ Ko (VZiaP.R) dR
X/ﬁmﬂmﬂmxmwmmﬁmeﬂmamKuﬁmam ’

O(R,7) =01(R,T) + 02(R, T),

where Iy, Ko ang 11, K1 are correspondingly the functions of zero and first
order of Bessel and Macdonald’s. (I(/) = I,K, = —K1>.

Viscosity strength on the wall and fluid consumption through pipe pro-
file are calculated as follows :

4y O (VMPTiaR) e

F=- : ,
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where II(K) Gauss function (II(K) = [;° e "a"dz).

3 Conclusion

Calculations show that pulsating flow of weakly conducting viscous incom-
pressible fluid in square pipe in presence of external homogenous magnetic
field is hampered and maximum speed transfers from axis of pipe towards
walls. The most intensive effect of retard is observed while the walls of
channel are ideally conducting. At minor Hartman’s figures viscous dis-
sipation plays more important role than Jole heat. The fluid temperature
in square pipe under pulsation drop of pressure is reduced with the length
of Hartman’s number and reduction of Prandtl number. This result
corresponds with statement on retarded effect of magnetic field on fluid
flow.
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